1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
/* zla_porpvgrw.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
doublereal zla_porpvgrw__(char *uplo, integer *ncols, doublecomplex *a,
integer *lda, doublecomplex *af, integer *ldaf, doublereal *work,
ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2, i__3;
doublereal ret_val, d__1, d__2, d__3, d__4;
/* Builtin functions */
double d_imag(doublecomplex *);
/* Local variables */
integer i__, j;
doublereal amax, umax;
extern logical lsame_(char *, char *);
logical upper;
doublereal rpvgrw;
/* -- LAPACK routine (version 3.2.1) -- */
/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/* -- Jason Riedy of Univ. of California Berkeley. -- */
/* -- April 2009 -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley and NAG Ltd. -- */
/* .. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZLA_PORPVGRW computes the reciprocal pivot growth factor */
/* norm(A)/norm(U). The "max absolute element" norm is used. If this is */
/* much less than 1, the stability of the LU factorization of the */
/* (equilibrated) matrix A could be poor. This also means that the */
/* solution X, estimated condition numbers, and error bounds could be */
/* unreliable. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* NCOLS (input) INTEGER */
/* The number of columns of the matrix A. NCOLS >= 0. */
/* A (input) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the N-by-N matrix A. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* AF (input) COMPLEX*16 array, dimension (LDAF,N) */
/* The triangular factor U or L from the Cholesky factorization */
/* A = U**T*U or A = L*L**T, as computed by ZPOTRF. */
/* LDAF (input) INTEGER */
/* The leading dimension of the array AF. LDAF >= max(1,N). */
/* WORK (input) COMPLEX*16 array, dimension (2*N) */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Statement Functions .. */
/* .. */
/* .. Statement Function Definitions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
af_dim1 = *ldaf;
af_offset = 1 + af_dim1;
af -= af_offset;
--work;
/* Function Body */
upper = lsame_("Upper", uplo);
/* DPOTRF will have factored only the NCOLSxNCOLS leading minor, so */
/* we restrict the growth search to that minor and use only the first */
/* 2*NCOLS workspace entries. */
rpvgrw = 1.;
i__1 = *ncols << 1;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] = 0.;
}
/* Find the max magnitude entry of each column. */
if (upper) {
i__1 = *ncols;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
i__3 = i__ + j * a_dim1;
d__3 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__
+ j * a_dim1]), abs(d__2)), d__4 = work[*ncols + j];
work[*ncols + j] = max(d__3,d__4);
}
}
} else {
i__1 = *ncols;
for (j = 1; j <= i__1; ++j) {
i__2 = *ncols;
for (i__ = j; i__ <= i__2; ++i__) {
/* Computing MAX */
i__3 = i__ + j * a_dim1;
d__3 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__
+ j * a_dim1]), abs(d__2)), d__4 = work[*ncols + j];
work[*ncols + j] = max(d__3,d__4);
}
}
}
/* Now find the max magnitude entry of each column of the factor in */
/* AF. No pivoting, so no permutations. */
if (lsame_("Upper", uplo)) {
i__1 = *ncols;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
i__3 = i__ + j * af_dim1;
d__3 = (d__1 = af[i__3].r, abs(d__1)) + (d__2 = d_imag(&af[
i__ + j * af_dim1]), abs(d__2)), d__4 = work[j];
work[j] = max(d__3,d__4);
}
}
} else {
i__1 = *ncols;
for (j = 1; j <= i__1; ++j) {
i__2 = *ncols;
for (i__ = j; i__ <= i__2; ++i__) {
/* Computing MAX */
i__3 = i__ + j * af_dim1;
d__3 = (d__1 = af[i__3].r, abs(d__1)) + (d__2 = d_imag(&af[
i__ + j * af_dim1]), abs(d__2)), d__4 = work[j];
work[j] = max(d__3,d__4);
}
}
}
/* Compute the *inverse* of the max element growth factor. Dividing */
/* by zero would imply the largest entry of the factor's column is */
/* zero. Than can happen when either the column of A is zero or */
/* massive pivots made the factor underflow to zero. Neither counts */
/* as growth in itself, so simply ignore terms with zero */
/* denominators. */
if (lsame_("Upper", uplo)) {
i__1 = *ncols;
for (i__ = 1; i__ <= i__1; ++i__) {
umax = work[i__];
amax = work[*ncols + i__];
if (umax != 0.) {
/* Computing MIN */
d__1 = amax / umax;
rpvgrw = min(d__1,rpvgrw);
}
}
} else {
i__1 = *ncols;
for (i__ = 1; i__ <= i__1; ++i__) {
umax = work[i__];
amax = work[*ncols + i__];
if (umax != 0.) {
/* Computing MIN */
d__1 = amax / umax;
rpvgrw = min(d__1,rpvgrw);
}
}
}
ret_val = rpvgrw;
return ret_val;
} /* zla_porpvgrw__ */
|