1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
/* zla_gbrcond_x.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
doublereal zla_gbrcond_x__(char *trans, integer *n, integer *kl, integer *ku,
doublecomplex *ab, integer *ldab, doublecomplex *afb, integer *ldafb,
integer *ipiv, doublecomplex *x, integer *info, doublecomplex *work,
doublereal *rwork, ftnlen trans_len)
{
/* System generated locals */
integer ab_dim1, ab_offset, afb_dim1, afb_offset, i__1, i__2, i__3, i__4;
doublereal ret_val, d__1, d__2;
doublecomplex z__1, z__2;
/* Builtin functions */
double d_imag(doublecomplex *);
void z_div(doublecomplex *, doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, kd, ke;
doublereal tmp;
integer kase;
extern logical lsame_(char *, char *);
integer isave[3];
doublereal anorm;
extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *,
doublecomplex *, doublereal *, integer *, integer *), xerbla_(
char *, integer *);
doublereal ainvnm;
extern /* Subroutine */ int zgbtrs_(char *, integer *, integer *, integer
*, integer *, doublecomplex *, integer *, integer *,
doublecomplex *, integer *, integer *);
logical notrans;
/* -- LAPACK routine (version 3.2.1) -- */
/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/* -- Jason Riedy of Univ. of California Berkeley. -- */
/* -- April 2009 -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley and NAG Ltd. -- */
/* .. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* Purpose */
/* ======= */
/* ZLA_GBRCOND_X Computes the infinity norm condition number of */
/* op(A) * diag(X) where X is a COMPLEX*16 vector. */
/* Arguments */
/* ========= */
/* TRANS (input) CHARACTER*1 */
/* Specifies the form of the system of equations: */
/* = 'N': A * X = B (No transpose) */
/* = 'T': A**T * X = B (Transpose) */
/* = 'C': A**H * X = B (Conjugate Transpose = Transpose) */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* KL (input) INTEGER */
/* The number of subdiagonals within the band of A. KL >= 0. */
/* KU (input) INTEGER */
/* The number of superdiagonals within the band of A. KU >= 0. */
/* AB (input) COMPLEX*16 array, dimension (LDAB,N) */
/* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
/* The j-th column of A is stored in the j-th column of the */
/* array AB as follows: */
/* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= KL+KU+1. */
/* AFB (input) COMPLEX*16 array, dimension (LDAFB,N) */
/* Details of the LU factorization of the band matrix A, as */
/* computed by ZGBTRF. U is stored as an upper triangular */
/* band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
/* and the multipliers used during the factorization are stored */
/* in rows KL+KU+2 to 2*KL+KU+1. */
/* LDAFB (input) INTEGER */
/* The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */
/* IPIV (input) INTEGER array, dimension (N) */
/* The pivot indices from the factorization A = P*L*U */
/* as computed by ZGBTRF; row i of the matrix was interchanged */
/* with row IPIV(i). */
/* X (input) COMPLEX*16 array, dimension (N) */
/* The vector X in the formula op(A) * diag(X). */
/* INFO (output) INTEGER */
/* = 0: Successful exit. */
/* i > 0: The ith argument is invalid. */
/* WORK (input) COMPLEX*16 array, dimension (2*N). */
/* Workspace. */
/* RWORK (input) DOUBLE PRECISION array, dimension (N). */
/* Workspace. */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Statement Functions .. */
/* .. */
/* .. Statement Function Definitions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
afb_dim1 = *ldafb;
afb_offset = 1 + afb_dim1;
afb -= afb_offset;
--ipiv;
--x;
--work;
--rwork;
/* Function Body */
ret_val = 0.;
*info = 0;
notrans = lsame_(trans, "N");
if (! notrans && ! lsame_(trans, "T") && ! lsame_(
trans, "C")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*kl < 0 || *kl > *n - 1) {
*info = -3;
} else if (*ku < 0 || *ku > *n - 1) {
*info = -4;
} else if (*ldab < *kl + *ku + 1) {
*info = -6;
} else if (*ldafb < (*kl << 1) + *ku + 1) {
*info = -8;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZLA_GBRCOND_X", &i__1);
return ret_val;
}
/* Compute norm of op(A)*op2(C). */
kd = *ku + 1;
ke = *kl + 1;
anorm = 0.;
if (notrans) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
tmp = 0.;
/* Computing MAX */
i__2 = i__ - *kl;
/* Computing MIN */
i__4 = i__ + *ku;
i__3 = min(i__4,*n);
for (j = max(i__2,1); j <= i__3; ++j) {
i__2 = kd + i__ - j + j * ab_dim1;
i__4 = j;
z__2.r = ab[i__2].r * x[i__4].r - ab[i__2].i * x[i__4].i,
z__2.i = ab[i__2].r * x[i__4].i + ab[i__2].i * x[i__4]
.r;
z__1.r = z__2.r, z__1.i = z__2.i;
tmp += (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1),
abs(d__2));
}
rwork[i__] = tmp;
anorm = max(anorm,tmp);
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
tmp = 0.;
/* Computing MAX */
i__3 = i__ - *kl;
/* Computing MIN */
i__4 = i__ + *ku;
i__2 = min(i__4,*n);
for (j = max(i__3,1); j <= i__2; ++j) {
i__3 = ke - i__ + j + i__ * ab_dim1;
i__4 = j;
z__2.r = ab[i__3].r * x[i__4].r - ab[i__3].i * x[i__4].i,
z__2.i = ab[i__3].r * x[i__4].i + ab[i__3].i * x[i__4]
.r;
z__1.r = z__2.r, z__1.i = z__2.i;
tmp += (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1),
abs(d__2));
}
rwork[i__] = tmp;
anorm = max(anorm,tmp);
}
}
/* Quick return if possible. */
if (*n == 0) {
ret_val = 1.;
return ret_val;
} else if (anorm == 0.) {
return ret_val;
}
/* Estimate the norm of inv(op(A)). */
ainvnm = 0.;
kase = 0;
L10:
zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
if (kase != 0) {
if (kase == 2) {
/* Multiply by R. */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
i__3 = i__;
i__4 = i__;
z__1.r = rwork[i__4] * work[i__3].r, z__1.i = rwork[i__4] *
work[i__3].i;
work[i__2].r = z__1.r, work[i__2].i = z__1.i;
}
if (notrans) {
zgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset],
ldafb, &ipiv[1], &work[1], n, info);
} else {
zgbtrs_("Conjugate transpose", n, kl, ku, &c__1, &afb[
afb_offset], ldafb, &ipiv[1], &work[1], n, info);
}
/* Multiply by inv(X). */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
z_div(&z__1, &work[i__], &x[i__]);
work[i__2].r = z__1.r, work[i__2].i = z__1.i;
}
} else {
/* Multiply by inv(X'). */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
z_div(&z__1, &work[i__], &x[i__]);
work[i__2].r = z__1.r, work[i__2].i = z__1.i;
}
if (notrans) {
zgbtrs_("Conjugate transpose", n, kl, ku, &c__1, &afb[
afb_offset], ldafb, &ipiv[1], &work[1], n, info);
} else {
zgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset],
ldafb, &ipiv[1], &work[1], n, info);
}
/* Multiply by R. */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
i__3 = i__;
i__4 = i__;
z__1.r = rwork[i__4] * work[i__3].r, z__1.i = rwork[i__4] *
work[i__3].i;
work[i__2].r = z__1.r, work[i__2].i = z__1.i;
}
}
goto L10;
}
/* Compute the estimate of the reciprocal condition number. */
if (ainvnm != 0.) {
ret_val = 1. / ainvnm;
}
return ret_val;
} /* zla_gbrcond_x__ */
|