aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zgtcon.c
blob: a7607fdba92aa5092ea167b883b5fe7e0c622331 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/* zgtcon.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int zgtcon_(char *norm, integer *n, doublecomplex *dl, 
	doublecomplex *d__, doublecomplex *du, doublecomplex *du2, integer *
	ipiv, doublereal *anorm, doublereal *rcond, doublecomplex *work, 
	integer *info)
{
    /* System generated locals */
    integer i__1, i__2;

    /* Local variables */
    integer i__, kase, kase1;
    extern logical lsame_(char *, char *);
    integer isave[3];
    extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *, 
	    doublecomplex *, doublereal *, integer *, integer *), xerbla_(
	    char *, integer *);
    doublereal ainvnm;
    logical onenrm;
    extern /* Subroutine */ int zgttrs_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *
, integer *, doublecomplex *, integer *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGTCON estimates the reciprocal of the condition number of a complex */
/*  tridiagonal matrix A using the LU factorization as computed by */
/*  ZGTTRF. */

/*  An estimate is obtained for norm(inv(A)), and the reciprocal of the */
/*  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies whether the 1-norm condition number or the */
/*          infinity-norm condition number is required: */
/*          = '1' or 'O':  1-norm; */
/*          = 'I':         Infinity-norm. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  DL      (input) COMPLEX*16 array, dimension (N-1) */
/*          The (n-1) multipliers that define the matrix L from the */
/*          LU factorization of A as computed by ZGTTRF. */

/*  D       (input) COMPLEX*16 array, dimension (N) */
/*          The n diagonal elements of the upper triangular matrix U from */
/*          the LU factorization of A. */

/*  DU      (input) COMPLEX*16 array, dimension (N-1) */
/*          The (n-1) elements of the first superdiagonal of U. */

/*  DU2     (input) COMPLEX*16 array, dimension (N-2) */
/*          The (n-2) elements of the second superdiagonal of U. */

/*  IPIV    (input) INTEGER array, dimension (N) */
/*          The pivot indices; for 1 <= i <= n, row i of the matrix was */
/*          interchanged with row IPIV(i).  IPIV(i) will always be either */
/*          i or i+1; IPIV(i) = i indicates a row interchange was not */
/*          required. */

/*  ANORM   (input) DOUBLE PRECISION */
/*          If NORM = '1' or 'O', the 1-norm of the original matrix A. */
/*          If NORM = 'I', the infinity-norm of the original matrix A. */

/*  RCOND   (output) DOUBLE PRECISION */
/*          The reciprocal of the condition number of the matrix A, */
/*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */
/*          estimate of the 1-norm of inv(A) computed in this routine. */

/*  WORK    (workspace) COMPLEX*16 array, dimension (2*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments. */

    /* Parameter adjustments */
    --work;
    --ipiv;
    --du2;
    --du;
    --d__;
    --dl;

    /* Function Body */
    *info = 0;
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
    if (! onenrm && ! lsame_(norm, "I")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*anorm < 0.) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGTCON", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *rcond = 0.;
    if (*n == 0) {
	*rcond = 1.;
	return 0;
    } else if (*anorm == 0.) {
	return 0;
    }

/*     Check that D(1:N) is non-zero. */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = i__;
	if (d__[i__2].r == 0. && d__[i__2].i == 0.) {
	    return 0;
	}
/* L10: */
    }

    ainvnm = 0.;
    if (onenrm) {
	kase1 = 1;
    } else {
	kase1 = 2;
    }
    kase = 0;
L20:
    zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
    if (kase != 0) {
	if (kase == kase1) {

/*           Multiply by inv(U)*inv(L). */

	    zgttrs_("No transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1]
, &ipiv[1], &work[1], n, info);
	} else {

/*           Multiply by inv(L')*inv(U'). */

	    zgttrs_("Conjugate transpose", n, &c__1, &dl[1], &d__[1], &du[1], 
		    &du2[1], &ipiv[1], &work[1], n, info);
	}
	goto L20;
    }

/*     Compute the estimate of the reciprocal condition number. */

    if (ainvnm != 0.) {
	*rcond = 1. / ainvnm / *anorm;
    }

    return 0;

/*     End of ZGTCON */

} /* zgtcon_ */