aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zgglse.c
blob: 065663e25d142ff6b48bd204c81682379cf61da8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/* zgglse.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static doublecomplex c_b1 = {1.,0.};
static integer c__1 = 1;
static integer c_n1 = -1;

/* Subroutine */ int zgglse_(integer *m, integer *n, integer *p, 
	doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, 
	doublecomplex *c__, doublecomplex *d__, doublecomplex *x, 
	doublecomplex *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
    doublecomplex z__1;

    /* Local variables */
    integer nb, mn, nr, nb1, nb2, nb3, nb4, lopt;
    extern /* Subroutine */ int zgemv_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *), 
	    zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, 
	    integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *), ztrmv_(char *, char *, 
	    char *, integer *, doublecomplex *, integer *, doublecomplex *, 
	    integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int zggrqf_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *)
	    ;
    integer lwkmin, lwkopt;
    logical lquery;
    extern /* Subroutine */ int zunmqr_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunmrq_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *), ztrtrs_(char *, char *, char *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *, 
	     integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     February 2007 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGGLSE solves the linear equality-constrained least squares (LSE) */
/*  problem: */

/*          minimize || c - A*x ||_2   subject to   B*x = d */

/*  where A is an M-by-N matrix, B is a P-by-N matrix, c is a given */
/*  M-vector, and d is a given P-vector. It is assumed that */
/*  P <= N <= M+P, and */

/*           rank(B) = P and  rank( ( A ) ) = N. */
/*                                ( ( B ) ) */

/*  These conditions ensure that the LSE problem has a unique solution, */
/*  which is obtained using a generalized RQ factorization of the */
/*  matrices (B, A) given by */

/*     B = (0 R)*Q,   A = Z*T*Q. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrices A and B. N >= 0. */

/*  P       (input) INTEGER */
/*          The number of rows of the matrix B. 0 <= P <= N <= M+P. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, the elements on and above the diagonal of the array */
/*          contain the min(M,N)-by-N upper trapezoidal matrix T. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,M). */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB,N) */
/*          On entry, the P-by-N matrix B. */
/*          On exit, the upper triangle of the subarray B(1:P,N-P+1:N) */
/*          contains the P-by-P upper triangular matrix R. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= max(1,P). */

/*  C       (input/output) COMPLEX*16 array, dimension (M) */
/*          On entry, C contains the right hand side vector for the */
/*          least squares part of the LSE problem. */
/*          On exit, the residual sum of squares for the solution */
/*          is given by the sum of squares of elements N-P+1 to M of */
/*          vector C. */

/*  D       (input/output) COMPLEX*16 array, dimension (P) */
/*          On entry, D contains the right hand side vector for the */
/*          constrained equation. */
/*          On exit, D is destroyed. */

/*  X       (output) COMPLEX*16 array, dimension (N) */
/*          On exit, X is the solution of the LSE problem. */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >= max(1,M+N+P). */
/*          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB, */
/*          where NB is an upper bound for the optimal blocksizes for */
/*          ZGEQRF, CGERQF, ZUNMQR and CUNMRQ. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          = 1:  the upper triangular factor R associated with B in the */
/*                generalized RQ factorization of the pair (B, A) is */
/*                singular, so that rank(B) < P; the least squares */
/*                solution could not be computed. */
/*          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor */
/*                T associated with A in the generalized RQ factorization */
/*                of the pair (B, A) is singular, so that */
/*                rank( (A) ) < N; the least squares solution could not */
/*                    ( (B) ) */
/*                be computed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --c__;
    --d__;
    --x;
    --work;

    /* Function Body */
    *info = 0;
    mn = min(*m,*n);
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*p < 0 || *p > *n || *p < *n - *m) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,*p)) {
	*info = -7;
    }

/*     Calculate workspace */

    if (*info == 0) {
	if (*n == 0) {
	    lwkmin = 1;
	    lwkopt = 1;
	} else {
	    nb1 = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1);
	    nb2 = ilaenv_(&c__1, "ZGERQF", " ", m, n, &c_n1, &c_n1);
	    nb3 = ilaenv_(&c__1, "ZUNMQR", " ", m, n, p, &c_n1);
	    nb4 = ilaenv_(&c__1, "ZUNMRQ", " ", m, n, p, &c_n1);
/* Computing MAX */
	    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
	    nb = max(i__1,nb4);
	    lwkmin = *m + *n + *p;
	    lwkopt = *p + mn + max(*m,*n) * nb;
	}
	work[1].r = (doublereal) lwkopt, work[1].i = 0.;

	if (*lwork < lwkmin && ! lquery) {
	    *info = -12;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGGLSE", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Compute the GRQ factorization of matrices B and A: */

/*            B*Q' = (  0  T12 ) P   Z'*A*Q' = ( R11 R12 ) N-P */
/*                     N-P  P                  (  0  R22 ) M+P-N */
/*                                               N-P  P */

/*     where T12 and R11 are upper triangular, and Q and Z are */
/*     unitary. */

    i__1 = *lwork - *p - mn;
    zggrqf_(p, m, n, &b[b_offset], ldb, &work[1], &a[a_offset], lda, &work[*p 
	    + 1], &work[*p + mn + 1], &i__1, info);
    i__1 = *p + mn + 1;
    lopt = (integer) work[i__1].r;

/*     Update c = Z'*c = ( c1 ) N-P */
/*                       ( c2 ) M+P-N */

    i__1 = max(1,*m);
    i__2 = *lwork - *p - mn;
    zunmqr_("Left", "Conjugate Transpose", m, &c__1, &mn, &a[a_offset], lda, &
	    work[*p + 1], &c__[1], &i__1, &work[*p + mn + 1], &i__2, info);
/* Computing MAX */
    i__3 = *p + mn + 1;
    i__1 = lopt, i__2 = (integer) work[i__3].r;
    lopt = max(i__1,i__2);

/*     Solve T12*x2 = d for x2 */

    if (*p > 0) {
	ztrtrs_("Upper", "No transpose", "Non-unit", p, &c__1, &b[(*n - *p + 
		1) * b_dim1 + 1], ldb, &d__[1], p, info);

	if (*info > 0) {
	    *info = 1;
	    return 0;
	}

/*        Put the solution in X */

	zcopy_(p, &d__[1], &c__1, &x[*n - *p + 1], &c__1);

/*        Update c1 */

	i__1 = *n - *p;
	z__1.r = -1., z__1.i = -0.;
	zgemv_("No transpose", &i__1, p, &z__1, &a[(*n - *p + 1) * a_dim1 + 1]
, lda, &d__[1], &c__1, &c_b1, &c__[1], &c__1);
    }

/*     Solve R11*x1 = c1 for x1 */

    if (*n > *p) {
	i__1 = *n - *p;
	i__2 = *n - *p;
	ztrtrs_("Upper", "No transpose", "Non-unit", &i__1, &c__1, &a[
		a_offset], lda, &c__[1], &i__2, info);

	if (*info > 0) {
	    *info = 2;
	    return 0;
	}

/*        Put the solutions in X */

	i__1 = *n - *p;
	zcopy_(&i__1, &c__[1], &c__1, &x[1], &c__1);
    }

/*     Compute the residual vector: */

    if (*m < *n) {
	nr = *m + *p - *n;
	if (nr > 0) {
	    i__1 = *n - *m;
	    z__1.r = -1., z__1.i = -0.;
	    zgemv_("No transpose", &nr, &i__1, &z__1, &a[*n - *p + 1 + (*m + 
		    1) * a_dim1], lda, &d__[nr + 1], &c__1, &c_b1, &c__[*n - *
		    p + 1], &c__1);
	}
    } else {
	nr = *p;
    }
    if (nr > 0) {
	ztrmv_("Upper", "No transpose", "Non unit", &nr, &a[*n - *p + 1 + (*n 
		- *p + 1) * a_dim1], lda, &d__[1], &c__1);
	z__1.r = -1., z__1.i = -0.;
	zaxpy_(&nr, &z__1, &d__[1], &c__1, &c__[*n - *p + 1], &c__1);
    }

/*     Backward transformation x = Q'*x */

    i__1 = *lwork - *p - mn;
    zunmrq_("Left", "Conjugate Transpose", n, &c__1, p, &b[b_offset], ldb, &
	    work[1], &x[1], n, &work[*p + mn + 1], &i__1, info);
/* Computing MAX */
    i__4 = *p + mn + 1;
    i__2 = lopt, i__3 = (integer) work[i__4].r;
    i__1 = *p + mn + max(i__2,i__3);
    work[1].r = (doublereal) i__1, work[1].i = 0.;

    return 0;

/*     End of ZGGLSE */

} /* zgglse_ */