aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zggbal.c
blob: f875672154051bc9f2017df9e7850ceb21aeaa2e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/* zggbal.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;
static doublereal c_b36 = 10.;
static doublereal c_b72 = .5;

/* Subroutine */ int zggbal_(char *job, integer *n, doublecomplex *a, integer 
	*lda, doublecomplex *b, integer *ldb, integer *ilo, integer *ihi, 
	doublereal *lscale, doublereal *rscale, doublereal *work, integer *
	info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
    doublereal d__1, d__2, d__3;

    /* Builtin functions */
    double d_lg10(doublereal *), d_imag(doublecomplex *), z_abs(doublecomplex 
	    *), d_sign(doublereal *, doublereal *), pow_di(doublereal *, 
	    integer *);

    /* Local variables */
    integer i__, j, k, l, m;
    doublereal t;
    integer jc;
    doublereal ta, tb, tc;
    integer ir;
    doublereal ew;
    integer it, nr, ip1, jp1, lm1;
    doublereal cab, rab, ewc, cor, sum;
    integer nrp2, icab, lcab;
    doublereal beta, coef;
    integer irab, lrab;
    doublereal basl, cmax;
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    doublereal coef2, coef5, gamma, alpha;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    extern logical lsame_(char *, char *);
    doublereal sfmin, sfmax;
    integer iflow;
    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *);
    integer kount;
    extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    extern doublereal dlamch_(char *);
    doublereal pgamma;
    extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
	    integer *, doublereal *, doublecomplex *, integer *);
    integer lsfmin;
    extern integer izamax_(integer *, doublecomplex *, integer *);
    integer lsfmax;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGGBAL balances a pair of general complex matrices (A,B).  This */
/*  involves, first, permuting A and B by similarity transformations to */
/*  isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N */
/*  elements on the diagonal; and second, applying a diagonal similarity */
/*  transformation to rows and columns ILO to IHI to make the rows */
/*  and columns as close in norm as possible. Both steps are optional. */

/*  Balancing may reduce the 1-norm of the matrices, and improve the */
/*  accuracy of the computed eigenvalues and/or eigenvectors in the */
/*  generalized eigenvalue problem A*x = lambda*B*x. */

/*  Arguments */
/*  ========= */

/*  JOB     (input) CHARACTER*1 */
/*          Specifies the operations to be performed on A and B: */
/*          = 'N':  none:  simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 */
/*                  and RSCALE(I) = 1.0 for i=1,...,N; */
/*          = 'P':  permute only; */
/*          = 'S':  scale only; */
/*          = 'B':  both permute and scale. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the input matrix A. */
/*          On exit, A is overwritten by the balanced matrix. */
/*          If JOB = 'N', A is not referenced. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,N). */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB,N) */
/*          On entry, the input matrix B. */
/*          On exit, B is overwritten by the balanced matrix. */
/*          If JOB = 'N', B is not referenced. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= max(1,N). */

/*  ILO     (output) INTEGER */
/*  IHI     (output) INTEGER */
/*          ILO and IHI are set to integers such that on exit */
/*          A(i,j) = 0 and B(i,j) = 0 if i > j and */
/*          j = 1,...,ILO-1 or i = IHI+1,...,N. */
/*          If JOB = 'N' or 'S', ILO = 1 and IHI = N. */

/*  LSCALE  (output) DOUBLE PRECISION array, dimension (N) */
/*          Details of the permutations and scaling factors applied */
/*          to the left side of A and B.  If P(j) is the index of the */
/*          row interchanged with row j, and D(j) is the scaling factor */
/*          applied to row j, then */
/*            LSCALE(j) = P(j)    for J = 1,...,ILO-1 */
/*                      = D(j)    for J = ILO,...,IHI */
/*                      = P(j)    for J = IHI+1,...,N. */
/*          The order in which the interchanges are made is N to IHI+1, */
/*          then 1 to ILO-1. */

/*  RSCALE  (output) DOUBLE PRECISION array, dimension (N) */
/*          Details of the permutations and scaling factors applied */
/*          to the right side of A and B.  If P(j) is the index of the */
/*          column interchanged with column j, and D(j) is the scaling */
/*          factor applied to column j, then */
/*            RSCALE(j) = P(j)    for J = 1,...,ILO-1 */
/*                      = D(j)    for J = ILO,...,IHI */
/*                      = P(j)    for J = IHI+1,...,N. */
/*          The order in which the interchanges are made is N to IHI+1, */
/*          then 1 to ILO-1. */

/*  WORK    (workspace) REAL array, dimension (lwork) */
/*          lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and */
/*          at least 1 when JOB = 'N' or 'P'. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  See R.C. WARD, Balancing the generalized eigenvalue problem, */
/*                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function definitions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --lscale;
    --rscale;
    --work;

    /* Function Body */
    *info = 0;
    if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S") 
	    && ! lsame_(job, "B")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    } else if (*ldb < max(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGGBAL", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	*ilo = 1;
	*ihi = *n;
	return 0;
    }

    if (*n == 1) {
	*ilo = 1;
	*ihi = *n;
	lscale[1] = 1.;
	rscale[1] = 1.;
	return 0;
    }

    if (lsame_(job, "N")) {
	*ilo = 1;
	*ihi = *n;
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    lscale[i__] = 1.;
	    rscale[i__] = 1.;
/* L10: */
	}
	return 0;
    }

    k = 1;
    l = *n;
    if (lsame_(job, "S")) {
	goto L190;
    }

    goto L30;

/*     Permute the matrices A and B to isolate the eigenvalues. */

/*     Find row with one nonzero in columns 1 through L */

L20:
    l = lm1;
    if (l != 1) {
	goto L30;
    }

    rscale[1] = 1.;
    lscale[1] = 1.;
    goto L190;

L30:
    lm1 = l - 1;
    for (i__ = l; i__ >= 1; --i__) {
	i__1 = lm1;
	for (j = 1; j <= i__1; ++j) {
	    jp1 = j + 1;
	    i__2 = i__ + j * a_dim1;
	    i__3 = i__ + j * b_dim1;
	    if (a[i__2].r != 0. || a[i__2].i != 0. || (b[i__3].r != 0. || b[
		    i__3].i != 0.)) {
		goto L50;
	    }
/* L40: */
	}
	j = l;
	goto L70;

L50:
	i__1 = l;
	for (j = jp1; j <= i__1; ++j) {
	    i__2 = i__ + j * a_dim1;
	    i__3 = i__ + j * b_dim1;
	    if (a[i__2].r != 0. || a[i__2].i != 0. || (b[i__3].r != 0. || b[
		    i__3].i != 0.)) {
		goto L80;
	    }
/* L60: */
	}
	j = jp1 - 1;

L70:
	m = l;
	iflow = 1;
	goto L160;
L80:
	;
    }
    goto L100;

/*     Find column with one nonzero in rows K through N */

L90:
    ++k;

L100:
    i__1 = l;
    for (j = k; j <= i__1; ++j) {
	i__2 = lm1;
	for (i__ = k; i__ <= i__2; ++i__) {
	    ip1 = i__ + 1;
	    i__3 = i__ + j * a_dim1;
	    i__4 = i__ + j * b_dim1;
	    if (a[i__3].r != 0. || a[i__3].i != 0. || (b[i__4].r != 0. || b[
		    i__4].i != 0.)) {
		goto L120;
	    }
/* L110: */
	}
	i__ = l;
	goto L140;
L120:
	i__2 = l;
	for (i__ = ip1; i__ <= i__2; ++i__) {
	    i__3 = i__ + j * a_dim1;
	    i__4 = i__ + j * b_dim1;
	    if (a[i__3].r != 0. || a[i__3].i != 0. || (b[i__4].r != 0. || b[
		    i__4].i != 0.)) {
		goto L150;
	    }
/* L130: */
	}
	i__ = ip1 - 1;
L140:
	m = k;
	iflow = 2;
	goto L160;
L150:
	;
    }
    goto L190;

/*     Permute rows M and I */

L160:
    lscale[m] = (doublereal) i__;
    if (i__ == m) {
	goto L170;
    }
    i__1 = *n - k + 1;
    zswap_(&i__1, &a[i__ + k * a_dim1], lda, &a[m + k * a_dim1], lda);
    i__1 = *n - k + 1;
    zswap_(&i__1, &b[i__ + k * b_dim1], ldb, &b[m + k * b_dim1], ldb);

/*     Permute columns M and J */

L170:
    rscale[m] = (doublereal) j;
    if (j == m) {
	goto L180;
    }
    zswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
    zswap_(&l, &b[j * b_dim1 + 1], &c__1, &b[m * b_dim1 + 1], &c__1);

L180:
    switch (iflow) {
	case 1:  goto L20;
	case 2:  goto L90;
    }

L190:
    *ilo = k;
    *ihi = l;

    if (lsame_(job, "P")) {
	i__1 = *ihi;
	for (i__ = *ilo; i__ <= i__1; ++i__) {
	    lscale[i__] = 1.;
	    rscale[i__] = 1.;
/* L195: */
	}
	return 0;
    }

    if (*ilo == *ihi) {
	return 0;
    }

/*     Balance the submatrix in rows ILO to IHI. */

    nr = *ihi - *ilo + 1;
    i__1 = *ihi;
    for (i__ = *ilo; i__ <= i__1; ++i__) {
	rscale[i__] = 0.;
	lscale[i__] = 0.;

	work[i__] = 0.;
	work[i__ + *n] = 0.;
	work[i__ + (*n << 1)] = 0.;
	work[i__ + *n * 3] = 0.;
	work[i__ + (*n << 2)] = 0.;
	work[i__ + *n * 5] = 0.;
/* L200: */
    }

/*     Compute right side vector in resulting linear equations */

    basl = d_lg10(&c_b36);
    i__1 = *ihi;
    for (i__ = *ilo; i__ <= i__1; ++i__) {
	i__2 = *ihi;
	for (j = *ilo; j <= i__2; ++j) {
	    i__3 = i__ + j * a_dim1;
	    if (a[i__3].r == 0. && a[i__3].i == 0.) {
		ta = 0.;
		goto L210;
	    }
	    i__3 = i__ + j * a_dim1;
	    d__3 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j *
		     a_dim1]), abs(d__2));
	    ta = d_lg10(&d__3) / basl;

L210:
	    i__3 = i__ + j * b_dim1;
	    if (b[i__3].r == 0. && b[i__3].i == 0.) {
		tb = 0.;
		goto L220;
	    }
	    i__3 = i__ + j * b_dim1;
	    d__3 = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[i__ + j *
		     b_dim1]), abs(d__2));
	    tb = d_lg10(&d__3) / basl;

L220:
	    work[i__ + (*n << 2)] = work[i__ + (*n << 2)] - ta - tb;
	    work[j + *n * 5] = work[j + *n * 5] - ta - tb;
/* L230: */
	}
/* L240: */
    }

    coef = 1. / (doublereal) (nr << 1);
    coef2 = coef * coef;
    coef5 = coef2 * .5;
    nrp2 = nr + 2;
    beta = 0.;
    it = 1;

/*     Start generalized conjugate gradient iteration */

L250:

    gamma = ddot_(&nr, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + (*n << 2)]
, &c__1) + ddot_(&nr, &work[*ilo + *n * 5], &c__1, &work[*ilo + *
	    n * 5], &c__1);

    ew = 0.;
    ewc = 0.;
    i__1 = *ihi;
    for (i__ = *ilo; i__ <= i__1; ++i__) {
	ew += work[i__ + (*n << 2)];
	ewc += work[i__ + *n * 5];
/* L260: */
    }

/* Computing 2nd power */
    d__1 = ew;
/* Computing 2nd power */
    d__2 = ewc;
/* Computing 2nd power */
    d__3 = ew - ewc;
    gamma = coef * gamma - coef2 * (d__1 * d__1 + d__2 * d__2) - coef5 * (
	    d__3 * d__3);
    if (gamma == 0.) {
	goto L350;
    }
    if (it != 1) {
	beta = gamma / pgamma;
    }
    t = coef5 * (ewc - ew * 3.);
    tc = coef5 * (ew - ewc * 3.);

    dscal_(&nr, &beta, &work[*ilo], &c__1);
    dscal_(&nr, &beta, &work[*ilo + *n], &c__1);

    daxpy_(&nr, &coef, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + *n], &
	    c__1);
    daxpy_(&nr, &coef, &work[*ilo + *n * 5], &c__1, &work[*ilo], &c__1);

    i__1 = *ihi;
    for (i__ = *ilo; i__ <= i__1; ++i__) {
	work[i__] += tc;
	work[i__ + *n] += t;
/* L270: */
    }

/*     Apply matrix to vector */

    i__1 = *ihi;
    for (i__ = *ilo; i__ <= i__1; ++i__) {
	kount = 0;
	sum = 0.;
	i__2 = *ihi;
	for (j = *ilo; j <= i__2; ++j) {
	    i__3 = i__ + j * a_dim1;
	    if (a[i__3].r == 0. && a[i__3].i == 0.) {
		goto L280;
	    }
	    ++kount;
	    sum += work[j];
L280:
	    i__3 = i__ + j * b_dim1;
	    if (b[i__3].r == 0. && b[i__3].i == 0.) {
		goto L290;
	    }
	    ++kount;
	    sum += work[j];
L290:
	    ;
	}
	work[i__ + (*n << 1)] = (doublereal) kount * work[i__ + *n] + sum;
/* L300: */
    }

    i__1 = *ihi;
    for (j = *ilo; j <= i__1; ++j) {
	kount = 0;
	sum = 0.;
	i__2 = *ihi;
	for (i__ = *ilo; i__ <= i__2; ++i__) {
	    i__3 = i__ + j * a_dim1;
	    if (a[i__3].r == 0. && a[i__3].i == 0.) {
		goto L310;
	    }
	    ++kount;
	    sum += work[i__ + *n];
L310:
	    i__3 = i__ + j * b_dim1;
	    if (b[i__3].r == 0. && b[i__3].i == 0.) {
		goto L320;
	    }
	    ++kount;
	    sum += work[i__ + *n];
L320:
	    ;
	}
	work[j + *n * 3] = (doublereal) kount * work[j] + sum;
/* L330: */
    }

    sum = ddot_(&nr, &work[*ilo + *n], &c__1, &work[*ilo + (*n << 1)], &c__1) 
	    + ddot_(&nr, &work[*ilo], &c__1, &work[*ilo + *n * 3], &c__1);
    alpha = gamma / sum;

/*     Determine correction to current iteration */

    cmax = 0.;
    i__1 = *ihi;
    for (i__ = *ilo; i__ <= i__1; ++i__) {
	cor = alpha * work[i__ + *n];
	if (abs(cor) > cmax) {
	    cmax = abs(cor);
	}
	lscale[i__] += cor;
	cor = alpha * work[i__];
	if (abs(cor) > cmax) {
	    cmax = abs(cor);
	}
	rscale[i__] += cor;
/* L340: */
    }
    if (cmax < .5) {
	goto L350;
    }

    d__1 = -alpha;
    daxpy_(&nr, &d__1, &work[*ilo + (*n << 1)], &c__1, &work[*ilo + (*n << 2)]
, &c__1);
    d__1 = -alpha;
    daxpy_(&nr, &d__1, &work[*ilo + *n * 3], &c__1, &work[*ilo + *n * 5], &
	    c__1);

    pgamma = gamma;
    ++it;
    if (it <= nrp2) {
	goto L250;
    }

/*     End generalized conjugate gradient iteration */

L350:
    sfmin = dlamch_("S");
    sfmax = 1. / sfmin;
    lsfmin = (integer) (d_lg10(&sfmin) / basl + 1.);
    lsfmax = (integer) (d_lg10(&sfmax) / basl);
    i__1 = *ihi;
    for (i__ = *ilo; i__ <= i__1; ++i__) {
	i__2 = *n - *ilo + 1;
	irab = izamax_(&i__2, &a[i__ + *ilo * a_dim1], lda);
	rab = z_abs(&a[i__ + (irab + *ilo - 1) * a_dim1]);
	i__2 = *n - *ilo + 1;
	irab = izamax_(&i__2, &b[i__ + *ilo * b_dim1], ldb);
/* Computing MAX */
	d__1 = rab, d__2 = z_abs(&b[i__ + (irab + *ilo - 1) * b_dim1]);
	rab = max(d__1,d__2);
	d__1 = rab + sfmin;
	lrab = (integer) (d_lg10(&d__1) / basl + 1.);
	ir = (integer) (lscale[i__] + d_sign(&c_b72, &lscale[i__]));
/* Computing MIN */
	i__2 = max(ir,lsfmin), i__2 = min(i__2,lsfmax), i__3 = lsfmax - lrab;
	ir = min(i__2,i__3);
	lscale[i__] = pow_di(&c_b36, &ir);
	icab = izamax_(ihi, &a[i__ * a_dim1 + 1], &c__1);
	cab = z_abs(&a[icab + i__ * a_dim1]);
	icab = izamax_(ihi, &b[i__ * b_dim1 + 1], &c__1);
/* Computing MAX */
	d__1 = cab, d__2 = z_abs(&b[icab + i__ * b_dim1]);
	cab = max(d__1,d__2);
	d__1 = cab + sfmin;
	lcab = (integer) (d_lg10(&d__1) / basl + 1.);
	jc = (integer) (rscale[i__] + d_sign(&c_b72, &rscale[i__]));
/* Computing MIN */
	i__2 = max(jc,lsfmin), i__2 = min(i__2,lsfmax), i__3 = lsfmax - lcab;
	jc = min(i__2,i__3);
	rscale[i__] = pow_di(&c_b36, &jc);
/* L360: */
    }

/*     Row scaling of matrices A and B */

    i__1 = *ihi;
    for (i__ = *ilo; i__ <= i__1; ++i__) {
	i__2 = *n - *ilo + 1;
	zdscal_(&i__2, &lscale[i__], &a[i__ + *ilo * a_dim1], lda);
	i__2 = *n - *ilo + 1;
	zdscal_(&i__2, &lscale[i__], &b[i__ + *ilo * b_dim1], ldb);
/* L370: */
    }

/*     Column scaling of matrices A and B */

    i__1 = *ihi;
    for (j = *ilo; j <= i__1; ++j) {
	zdscal_(ihi, &rscale[j], &a[j * a_dim1 + 1], &c__1);
	zdscal_(ihi, &rscale[j], &b[j * b_dim1 + 1], &c__1);
/* L380: */
    }

    return 0;

/*     End of ZGGBAL */

} /* zggbal_ */