aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zgetri.c
blob: 246b34ece8124d1b152bd8bb2f6f5936e3b6f871 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/* zgetri.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static doublecomplex c_b2 = {1.,0.};
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;

/* Subroutine */ int zgetri_(integer *n, doublecomplex *a, integer *lda, 
	integer *ipiv, doublecomplex *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
    doublecomplex z__1;

    /* Local variables */
    integer i__, j, jb, nb, jj, jp, nn, iws, nbmin;
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *), zgemv_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *), 
	    zswap_(integer *, doublecomplex *, integer *, doublecomplex *, 
	    integer *), ztrsm_(char *, char *, char *, char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), 
	    xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    integer ldwork, lwkopt;
    logical lquery;
    extern /* Subroutine */ int ztrtri_(char *, char *, integer *, 
	    doublecomplex *, integer *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGETRI computes the inverse of a matrix using the LU factorization */
/*  computed by ZGETRF. */

/*  This method inverts U and then computes inv(A) by solving the system */
/*  inv(A)*L = inv(U) for inv(A). */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the factors L and U from the factorization */
/*          A = P*L*U as computed by ZGETRF. */
/*          On exit, if INFO = 0, the inverse of the original matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  IPIV    (input) INTEGER array, dimension (N) */
/*          The pivot indices from ZGETRF; for 1<=i<=N, row i of the */
/*          matrix was interchanged with row IPIV(i). */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO=0, then WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,N). */
/*          For optimal performance LWORK >= N*NB, where NB is */
/*          the optimal blocksize returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, U(i,i) is exactly zero; the matrix is */
/*                singular and its inverse could not be computed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;
    --work;

    /* Function Body */
    *info = 0;
    nb = ilaenv_(&c__1, "ZGETRI", " ", n, &c_n1, &c_n1, &c_n1);
    lwkopt = *n * nb;
    work[1].r = (doublereal) lwkopt, work[1].i = 0.;
    lquery = *lwork == -1;
    if (*n < 0) {
	*info = -1;
    } else if (*lda < max(1,*n)) {
	*info = -3;
    } else if (*lwork < max(1,*n) && ! lquery) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGETRI", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form inv(U).  If INFO > 0 from ZTRTRI, then U is singular, */
/*     and the inverse is not computed. */

    ztrtri_("Upper", "Non-unit", n, &a[a_offset], lda, info);
    if (*info > 0) {
	return 0;
    }

    nbmin = 2;
    ldwork = *n;
    if (nb > 1 && nb < *n) {
/* Computing MAX */
	i__1 = ldwork * nb;
	iws = max(i__1,1);
	if (*lwork < iws) {
	    nb = *lwork / ldwork;
/* Computing MAX */
	    i__1 = 2, i__2 = ilaenv_(&c__2, "ZGETRI", " ", n, &c_n1, &c_n1, &
		    c_n1);
	    nbmin = max(i__1,i__2);
	}
    } else {
	iws = *n;
    }

/*     Solve the equation inv(A)*L = inv(U) for inv(A). */

    if (nb < nbmin || nb >= *n) {

/*        Use unblocked code. */

	for (j = *n; j >= 1; --j) {

/*           Copy current column of L to WORK and replace with zeros. */

	    i__1 = *n;
	    for (i__ = j + 1; i__ <= i__1; ++i__) {
		i__2 = i__;
		i__3 = i__ + j * a_dim1;
		work[i__2].r = a[i__3].r, work[i__2].i = a[i__3].i;
		i__2 = i__ + j * a_dim1;
		a[i__2].r = 0., a[i__2].i = 0.;
/* L10: */
	    }

/*           Compute current column of inv(A). */

	    if (j < *n) {
		i__1 = *n - j;
		z__1.r = -1., z__1.i = -0.;
		zgemv_("No transpose", n, &i__1, &z__1, &a[(j + 1) * a_dim1 + 
			1], lda, &work[j + 1], &c__1, &c_b2, &a[j * a_dim1 + 
			1], &c__1);
	    }
/* L20: */
	}
    } else {

/*        Use blocked code. */

	nn = (*n - 1) / nb * nb + 1;
	i__1 = -nb;
	for (j = nn; i__1 < 0 ? j >= 1 : j <= 1; j += i__1) {
/* Computing MIN */
	    i__2 = nb, i__3 = *n - j + 1;
	    jb = min(i__2,i__3);

/*           Copy current block column of L to WORK and replace with */
/*           zeros. */

	    i__2 = j + jb - 1;
	    for (jj = j; jj <= i__2; ++jj) {
		i__3 = *n;
		for (i__ = jj + 1; i__ <= i__3; ++i__) {
		    i__4 = i__ + (jj - j) * ldwork;
		    i__5 = i__ + jj * a_dim1;
		    work[i__4].r = a[i__5].r, work[i__4].i = a[i__5].i;
		    i__4 = i__ + jj * a_dim1;
		    a[i__4].r = 0., a[i__4].i = 0.;
/* L30: */
		}
/* L40: */
	    }

/*           Compute current block column of inv(A). */

	    if (j + jb <= *n) {
		i__2 = *n - j - jb + 1;
		z__1.r = -1., z__1.i = -0.;
		zgemm_("No transpose", "No transpose", n, &jb, &i__2, &z__1, &
			a[(j + jb) * a_dim1 + 1], lda, &work[j + jb], &ldwork, 
			 &c_b2, &a[j * a_dim1 + 1], lda);
	    }
	    ztrsm_("Right", "Lower", "No transpose", "Unit", n, &jb, &c_b2, &
		    work[j], &ldwork, &a[j * a_dim1 + 1], lda);
/* L50: */
	}
    }

/*     Apply column interchanges. */

    for (j = *n - 1; j >= 1; --j) {
	jp = ipiv[j];
	if (jp != j) {
	    zswap_(n, &a[j * a_dim1 + 1], &c__1, &a[jp * a_dim1 + 1], &c__1);
	}
/* L60: */
    }

    work[1].r = (doublereal) iws, work[1].i = 0.;
    return 0;

/*     End of ZGETRI */

} /* zgetri_ */