1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
/* zgebak.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int zgebak_(char *job, char *side, integer *n, integer *ilo,
integer *ihi, doublereal *scale, integer *m, doublecomplex *v,
integer *ldv, integer *info)
{
/* System generated locals */
integer v_dim1, v_offset, i__1;
/* Local variables */
integer i__, k;
doublereal s;
integer ii;
extern logical lsame_(char *, char *);
logical leftv;
extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *), xerbla_(char *, integer *),
zdscal_(integer *, doublereal *, doublecomplex *, integer *);
logical rightv;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZGEBAK forms the right or left eigenvectors of a complex general */
/* matrix by backward transformation on the computed eigenvectors of the */
/* balanced matrix output by ZGEBAL. */
/* Arguments */
/* ========= */
/* JOB (input) CHARACTER*1 */
/* Specifies the type of backward transformation required: */
/* = 'N', do nothing, return immediately; */
/* = 'P', do backward transformation for permutation only; */
/* = 'S', do backward transformation for scaling only; */
/* = 'B', do backward transformations for both permutation and */
/* scaling. */
/* JOB must be the same as the argument JOB supplied to ZGEBAL. */
/* SIDE (input) CHARACTER*1 */
/* = 'R': V contains right eigenvectors; */
/* = 'L': V contains left eigenvectors. */
/* N (input) INTEGER */
/* The number of rows of the matrix V. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* The integers ILO and IHI determined by ZGEBAL. */
/* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* SCALE (input) DOUBLE PRECISION array, dimension (N) */
/* Details of the permutation and scaling factors, as returned */
/* by ZGEBAL. */
/* M (input) INTEGER */
/* The number of columns of the matrix V. M >= 0. */
/* V (input/output) COMPLEX*16 array, dimension (LDV,M) */
/* On entry, the matrix of right or left eigenvectors to be */
/* transformed, as returned by ZHSEIN or ZTREVC. */
/* On exit, V is overwritten by the transformed eigenvectors. */
/* LDV (input) INTEGER */
/* The leading dimension of the array V. LDV >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Decode and Test the input parameters */
/* Parameter adjustments */
--scale;
v_dim1 = *ldv;
v_offset = 1 + v_dim1;
v -= v_offset;
/* Function Body */
rightv = lsame_(side, "R");
leftv = lsame_(side, "L");
*info = 0;
if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
&& ! lsame_(job, "B")) {
*info = -1;
} else if (! rightv && ! leftv) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*ilo < 1 || *ilo > max(1,*n)) {
*info = -4;
} else if (*ihi < min(*ilo,*n) || *ihi > *n) {
*info = -5;
} else if (*m < 0) {
*info = -7;
} else if (*ldv < max(1,*n)) {
*info = -9;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZGEBAK", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*m == 0) {
return 0;
}
if (lsame_(job, "N")) {
return 0;
}
if (*ilo == *ihi) {
goto L30;
}
/* Backward balance */
if (lsame_(job, "S") || lsame_(job, "B")) {
if (rightv) {
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
s = scale[i__];
zdscal_(m, &s, &v[i__ + v_dim1], ldv);
/* L10: */
}
}
if (leftv) {
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
s = 1. / scale[i__];
zdscal_(m, &s, &v[i__ + v_dim1], ldv);
/* L20: */
}
}
}
/* Backward permutation */
/* For I = ILO-1 step -1 until 1, */
/* IHI+1 step 1 until N do -- */
L30:
if (lsame_(job, "P") || lsame_(job, "B")) {
if (rightv) {
i__1 = *n;
for (ii = 1; ii <= i__1; ++ii) {
i__ = ii;
if (i__ >= *ilo && i__ <= *ihi) {
goto L40;
}
if (i__ < *ilo) {
i__ = *ilo - ii;
}
k = (integer) scale[i__];
if (k == i__) {
goto L40;
}
zswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
L40:
;
}
}
if (leftv) {
i__1 = *n;
for (ii = 1; ii <= i__1; ++ii) {
i__ = ii;
if (i__ >= *ilo && i__ <= *ihi) {
goto L50;
}
if (i__ < *ilo) {
i__ = *ilo - ii;
}
k = (integer) scale[i__];
if (k == i__) {
goto L50;
}
zswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
L50:
;
}
}
}
return 0;
/* End of ZGEBAK */
} /* zgebak_ */
|