aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zgbtf2.c
blob: 354252c8627360e1ab0b73bf6a526515d5036f2c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/* zgbtf2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static doublecomplex c_b1 = {1.,0.};
static integer c__1 = 1;

/* Subroutine */ int zgbtf2_(integer *m, integer *n, integer *kl, integer *ku, 
	 doublecomplex *ab, integer *ldab, integer *ipiv, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
    doublecomplex z__1;

    /* Builtin functions */
    void z_div(doublecomplex *, doublecomplex *, doublecomplex *);

    /* Local variables */
    integer i__, j, km, jp, ju, kv;
    extern /* Subroutine */ int zscal_(integer *, doublecomplex *, 
	    doublecomplex *, integer *), zgeru_(integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *), zswap_(integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(
	    char *, integer *);
    extern integer izamax_(integer *, doublecomplex *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGBTF2 computes an LU factorization of a complex m-by-n band matrix */
/*  A using partial pivoting with row interchanges. */

/*  This is the unblocked version of the algorithm, calling Level 2 BLAS. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  KL      (input) INTEGER */
/*          The number of subdiagonals within the band of A.  KL >= 0. */

/*  KU      (input) INTEGER */
/*          The number of superdiagonals within the band of A.  KU >= 0. */

/*  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N) */
/*          On entry, the matrix A in band storage, in rows KL+1 to */
/*          2*KL+KU+1; rows 1 to KL of the array need not be set. */
/*          The j-th column of A is stored in the j-th column of the */
/*          array AB as follows: */
/*          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) */

/*          On exit, details of the factorization: U is stored as an */
/*          upper triangular band matrix with KL+KU superdiagonals in */
/*          rows 1 to KL+KU+1, and the multipliers used during the */
/*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
/*          See below for further details. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. */

/*  IPIV    (output) INTEGER array, dimension (min(M,N)) */
/*          The pivot indices; for 1 <= i <= min(M,N), row i of the */
/*          matrix was interchanged with row IPIV(i). */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
/*          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization */
/*               has been completed, but the factor U is exactly */
/*               singular, and division by zero will occur if it is used */
/*               to solve a system of equations. */

/*  Further Details */
/*  =============== */

/*  The band storage scheme is illustrated by the following example, when */
/*  M = N = 6, KL = 2, KU = 1: */

/*  On entry:                       On exit: */

/*      *    *    *    +    +    +       *    *    *   u14  u25  u36 */
/*      *    *    +    +    +    +       *    *   u13  u24  u35  u46 */
/*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
/*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */
/*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   * */
/*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    * */

/*  Array elements marked * are not used by the routine; elements marked */
/*  + need not be set on entry, but are required by the routine to store */
/*  elements of U, because of fill-in resulting from the row */
/*  interchanges. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     KV is the number of superdiagonals in the factor U, allowing for */
/*     fill-in. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --ipiv;

    /* Function Body */
    kv = *ku + *kl;

/*     Test the input parameters. */

    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kl < 0) {
	*info = -3;
    } else if (*ku < 0) {
	*info = -4;
    } else if (*ldab < *kl + kv + 1) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGBTF2", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

/*     Gaussian elimination with partial pivoting */

/*     Set fill-in elements in columns KU+2 to KV to zero. */

    i__1 = min(kv,*n);
    for (j = *ku + 2; j <= i__1; ++j) {
	i__2 = *kl;
	for (i__ = kv - j + 2; i__ <= i__2; ++i__) {
	    i__3 = i__ + j * ab_dim1;
	    ab[i__3].r = 0., ab[i__3].i = 0.;
/* L10: */
	}
/* L20: */
    }

/*     JU is the index of the last column affected by the current stage */
/*     of the factorization. */

    ju = 1;

    i__1 = min(*m,*n);
    for (j = 1; j <= i__1; ++j) {

/*        Set fill-in elements in column J+KV to zero. */

	if (j + kv <= *n) {
	    i__2 = *kl;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		i__3 = i__ + (j + kv) * ab_dim1;
		ab[i__3].r = 0., ab[i__3].i = 0.;
/* L30: */
	    }
	}

/*        Find pivot and test for singularity. KM is the number of */
/*        subdiagonal elements in the current column. */

/* Computing MIN */
	i__2 = *kl, i__3 = *m - j;
	km = min(i__2,i__3);
	i__2 = km + 1;
	jp = izamax_(&i__2, &ab[kv + 1 + j * ab_dim1], &c__1);
	ipiv[j] = jp + j - 1;
	i__2 = kv + jp + j * ab_dim1;
	if (ab[i__2].r != 0. || ab[i__2].i != 0.) {
/* Computing MAX */
/* Computing MIN */
	    i__4 = j + *ku + jp - 1;
	    i__2 = ju, i__3 = min(i__4,*n);
	    ju = max(i__2,i__3);

/*           Apply interchange to columns J to JU. */

	    if (jp != 1) {
		i__2 = ju - j + 1;
		i__3 = *ldab - 1;
		i__4 = *ldab - 1;
		zswap_(&i__2, &ab[kv + jp + j * ab_dim1], &i__3, &ab[kv + 1 + 
			j * ab_dim1], &i__4);
	    }
	    if (km > 0) {

/*              Compute multipliers. */

		z_div(&z__1, &c_b1, &ab[kv + 1 + j * ab_dim1]);
		zscal_(&km, &z__1, &ab[kv + 2 + j * ab_dim1], &c__1);

/*              Update trailing submatrix within the band. */

		if (ju > j) {
		    i__2 = ju - j;
		    z__1.r = -1., z__1.i = -0.;
		    i__3 = *ldab - 1;
		    i__4 = *ldab - 1;
		    zgeru_(&km, &i__2, &z__1, &ab[kv + 2 + j * ab_dim1], &
			    c__1, &ab[kv + (j + 1) * ab_dim1], &i__3, &ab[kv 
			    + 1 + (j + 1) * ab_dim1], &i__4);
		}
	    }
	} else {

/*           If pivot is zero, set INFO to the index of the pivot */
/*           unless a zero pivot has already been found. */

	    if (*info == 0) {
		*info = j;
	    }
	}
/* L40: */
    }
    return 0;

/*     End of ZGBTF2 */

} /* zgbtf2_ */