aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/strti2.c
blob: e8edd48b19b1d4d1471f40580b03669309e44094 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/* strti2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int strti2_(char *uplo, char *diag, integer *n, real *a, 
	integer *lda, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;

    /* Local variables */
    integer j;
    real ajj;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    logical upper;
    extern /* Subroutine */ int strmv_(char *, char *, char *, integer *, 
	    real *, integer *, real *, integer *), 
	    xerbla_(char *, integer *);
    logical nounit;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  STRTI2 computes the inverse of a real upper or lower triangular */
/*  matrix. */

/*  This is the Level 2 BLAS version of the algorithm. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the matrix A is upper or lower triangular. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  DIAG    (input) CHARACTER*1 */
/*          Specifies whether or not the matrix A is unit triangular. */
/*          = 'N':  Non-unit triangular */
/*          = 'U':  Unit triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) REAL array, dimension (LDA,N) */
/*          On entry, the triangular matrix A.  If UPLO = 'U', the */
/*          leading n by n upper triangular part of the array A contains */
/*          the upper triangular matrix, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading n by n lower triangular part of the array A contains */
/*          the lower triangular matrix, and the strictly upper */
/*          triangular part of A is not referenced.  If DIAG = 'U', the */
/*          diagonal elements of A are also not referenced and are */
/*          assumed to be 1. */

/*          On exit, the (triangular) inverse of the original matrix, in */
/*          the same storage format. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -k, the k-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    nounit = lsame_(diag, "N");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("STRTI2", &i__1);
	return 0;
    }

    if (upper) {

/*        Compute inverse of upper triangular matrix. */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    if (nounit) {
		a[j + j * a_dim1] = 1.f / a[j + j * a_dim1];
		ajj = -a[j + j * a_dim1];
	    } else {
		ajj = -1.f;
	    }

/*           Compute elements 1:j-1 of j-th column. */

	    i__2 = j - 1;
	    strmv_("Upper", "No transpose", diag, &i__2, &a[a_offset], lda, &
		    a[j * a_dim1 + 1], &c__1);
	    i__2 = j - 1;
	    sscal_(&i__2, &ajj, &a[j * a_dim1 + 1], &c__1);
/* L10: */
	}
    } else {

/*        Compute inverse of lower triangular matrix. */

	for (j = *n; j >= 1; --j) {
	    if (nounit) {
		a[j + j * a_dim1] = 1.f / a[j + j * a_dim1];
		ajj = -a[j + j * a_dim1];
	    } else {
		ajj = -1.f;
	    }
	    if (j < *n) {

/*              Compute elements j+1:n of j-th column. */

		i__1 = *n - j;
		strmv_("Lower", "No transpose", diag, &i__1, &a[j + 1 + (j + 
			1) * a_dim1], lda, &a[j + 1 + j * a_dim1], &c__1);
		i__1 = *n - j;
		sscal_(&i__1, &ajj, &a[j + 1 + j * a_dim1], &c__1);
	    }
/* L20: */
	}
    }

    return 0;

/*     End of STRTI2 */

} /* strti2_ */