1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/* sspevd.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int sspevd_(char *jobz, char *uplo, integer *n, real *ap,
real *w, real *z__, integer *ldz, real *work, integer *lwork, integer
*iwork, integer *liwork, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1;
real r__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
real eps;
integer inde;
real anrm, rmin, rmax, sigma;
extern logical lsame_(char *, char *);
integer iinfo;
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
integer lwmin;
logical wantz;
integer iscale;
extern doublereal slamch_(char *);
real safmin;
extern /* Subroutine */ int xerbla_(char *, integer *);
real bignum;
integer indtau;
extern /* Subroutine */ int sstedc_(char *, integer *, real *, real *,
real *, integer *, real *, integer *, integer *, integer *,
integer *);
integer indwrk, liwmin;
extern doublereal slansp_(char *, char *, integer *, real *, real *);
extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
integer llwork;
real smlnum;
extern /* Subroutine */ int ssptrd_(char *, integer *, real *, real *,
real *, real *, integer *);
logical lquery;
extern /* Subroutine */ int sopmtr_(char *, char *, char *, integer *,
integer *, real *, real *, real *, integer *, real *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SSPEVD computes all the eigenvalues and, optionally, eigenvectors */
/* of a real symmetric matrix A in packed storage. If eigenvectors are */
/* desired, it uses a divide and conquer algorithm. */
/* The divide and conquer algorithm makes very mild assumptions about */
/* floating point arithmetic. It will work on machines with a guard */
/* digit in add/subtract, or on those binary machines without guard */
/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/* without guard digits, but we know of none. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* AP (input/output) REAL array, dimension (N*(N+1)/2) */
/* On entry, the upper or lower triangle of the symmetric matrix */
/* A, packed columnwise in a linear array. The j-th column of A */
/* is stored in the array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
/* On exit, AP is overwritten by values generated during the */
/* reduction to tridiagonal form. If UPLO = 'U', the diagonal */
/* and first superdiagonal of the tridiagonal matrix T overwrite */
/* the corresponding elements of A, and if UPLO = 'L', the */
/* diagonal and first subdiagonal of T overwrite the */
/* corresponding elements of A. */
/* W (output) REAL array, dimension (N) */
/* If INFO = 0, the eigenvalues in ascending order. */
/* Z (output) REAL array, dimension (LDZ, N) */
/* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/* eigenvectors of the matrix A, with the i-th column of Z */
/* holding the eigenvector associated with W(i). */
/* If JOBZ = 'N', then Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= max(1,N). */
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the required LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. */
/* If N <= 1, LWORK must be at least 1. */
/* If JOBZ = 'N' and N > 1, LWORK must be at least 2*N. */
/* If JOBZ = 'V' and N > 1, LWORK must be at least */
/* 1 + 6*N + N**2. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the required sizes of the WORK and IWORK */
/* arrays, returns these values as the first entries of the WORK */
/* and IWORK arrays, and no error message related to LWORK or */
/* LIWORK is issued by XERBLA. */
/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/* On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */
/* LIWORK (input) INTEGER */
/* The dimension of the array IWORK. */
/* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. */
/* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */
/* If LIWORK = -1, then a workspace query is assumed; the */
/* routine only calculates the required sizes of the WORK and */
/* IWORK arrays, returns these values as the first entries of */
/* the WORK and IWORK arrays, and no error message related to */
/* LWORK or LIWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: if INFO = i, the algorithm failed to converge; i */
/* off-diagonal elements of an intermediate tridiagonal */
/* form did not converge to zero. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
--iwork;
/* Function Body */
wantz = lsame_(jobz, "V");
lquery = *lwork == -1 || *liwork == -1;
*info = 0;
if (! (wantz || lsame_(jobz, "N"))) {
*info = -1;
} else if (! (lsame_(uplo, "U") || lsame_(uplo,
"L"))) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*ldz < 1 || wantz && *ldz < *n) {
*info = -7;
}
if (*info == 0) {
if (*n <= 1) {
liwmin = 1;
lwmin = 1;
} else {
if (wantz) {
liwmin = *n * 5 + 3;
/* Computing 2nd power */
i__1 = *n;
lwmin = *n * 6 + 1 + i__1 * i__1;
} else {
liwmin = 1;
lwmin = *n << 1;
}
}
iwork[1] = liwmin;
work[1] = (real) lwmin;
if (*lwork < lwmin && ! lquery) {
*info = -9;
} else if (*liwork < liwmin && ! lquery) {
*info = -11;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SSPEVD", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
w[1] = ap[1];
if (wantz) {
z__[z_dim1 + 1] = 1.f;
}
return 0;
}
/* Get machine constants. */
safmin = slamch_("Safe minimum");
eps = slamch_("Precision");
smlnum = safmin / eps;
bignum = 1.f / smlnum;
rmin = sqrt(smlnum);
rmax = sqrt(bignum);
/* Scale matrix to allowable range, if necessary. */
anrm = slansp_("M", uplo, n, &ap[1], &work[1]);
iscale = 0;
if (anrm > 0.f && anrm < rmin) {
iscale = 1;
sigma = rmin / anrm;
} else if (anrm > rmax) {
iscale = 1;
sigma = rmax / anrm;
}
if (iscale == 1) {
i__1 = *n * (*n + 1) / 2;
sscal_(&i__1, &sigma, &ap[1], &c__1);
}
/* Call SSPTRD to reduce symmetric packed matrix to tridiagonal form. */
inde = 1;
indtau = inde + *n;
ssptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo);
/* For eigenvalues only, call SSTERF. For eigenvectors, first call */
/* SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */
/* tridiagonal matrix, then call SOPMTR to multiply it by the */
/* Householder transformations represented in AP. */
if (! wantz) {
ssterf_(n, &w[1], &work[inde], info);
} else {
indwrk = indtau + *n;
llwork = *lwork - indwrk + 1;
sstedc_("I", n, &w[1], &work[inde], &z__[z_offset], ldz, &work[indwrk]
, &llwork, &iwork[1], liwork, info);
sopmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset],
ldz, &work[indwrk], &iinfo);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
if (iscale == 1) {
r__1 = 1.f / sigma;
sscal_(n, &r__1, &w[1], &c__1);
}
work[1] = (real) lwmin;
iwork[1] = liwmin;
return 0;
/* End of SSPEVD */
} /* sspevd_ */
|