aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/spstf2.c
blob: 0eab03ee9b23e302d81b7437fed091cc62862ac3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/* spstf2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;
static real c_b16 = -1.f;
static real c_b18 = 1.f;

/* Subroutine */ int spstf2_(char *uplo, integer *n, real *a, integer *lda, 
	integer *piv, integer *rank, real *tol, real *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    real r__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, maxlocval;
    real ajj;
    integer pvt;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    integer itemp;
    extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *, integer *);
    real stemp;
    logical upper;
    extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, 
	    integer *);
    real sstop;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern logical sisnan_(real *);
    extern integer smaxloc_(real *, integer *);


/*  -- LAPACK PROTOTYPE routine (version 3.2) -- */
/*     Craig Lucas, University of Manchester / NAG Ltd. */
/*     October, 2008 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SPSTF2 computes the Cholesky factorization with complete */
/*  pivoting of a real symmetric positive semidefinite matrix A. */

/*  The factorization has the form */
/*     P' * A * P = U' * U ,  if UPLO = 'U', */
/*     P' * A * P = L  * L',  if UPLO = 'L', */
/*  where U is an upper triangular matrix and L is lower triangular, and */
/*  P is stored as vector PIV. */

/*  This algorithm does not attempt to check that A is positive */
/*  semidefinite. This version of the algorithm calls level 2 BLAS. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          symmetric matrix A is stored. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) REAL array, dimension (LDA,N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
/*          n by n upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading n by n lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced. */

/*          On exit, if INFO = 0, the factor U or L from the Cholesky */
/*          factorization as above. */

/*  PIV     (output) INTEGER array, dimension (N) */
/*          PIV is such that the nonzero entries are P( PIV(K), K ) = 1. */

/*  RANK    (output) INTEGER */
/*          The rank of A given by the number of steps the algorithm */
/*          completed. */

/*  TOL     (input) REAL */
/*          User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) ) */
/*          will be used. The algorithm terminates at the (K-1)st step */
/*          if the pivot <= TOL. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  WORK    REAL array, dimension (2*N) */
/*          Work space. */

/*  INFO    (output) INTEGER */
/*          < 0: If INFO = -K, the K-th argument had an illegal value, */
/*          = 0: algorithm completed successfully, and */
/*          > 0: the matrix A is either rank deficient with computed rank */
/*               as returned in RANK, or is indefinite.  See Section 7 of */
/*               LAPACK Working Note #161 for further information. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters */

    /* Parameter adjustments */
    --work;
    --piv;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SPSTF2", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Initialize PIV */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	piv[i__] = i__;
/* L100: */
    }

/*     Compute stopping value */

    pvt = 1;
    ajj = a[pvt + pvt * a_dim1];
    i__1 = *n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	if (a[i__ + i__ * a_dim1] > ajj) {
	    pvt = i__;
	    ajj = a[pvt + pvt * a_dim1];
	}
    }
    if (ajj == 0.f || sisnan_(&ajj)) {
	*rank = 0;
	*info = 1;
	goto L170;
    }

/*     Compute stopping value if not supplied */

    if (*tol < 0.f) {
	sstop = *n * slamch_("Epsilon") * ajj;
    } else {
	sstop = *tol;
    }

/*     Set first half of WORK to zero, holds dot products */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	work[i__] = 0.f;
/* L110: */
    }

    if (upper) {

/*        Compute the Cholesky factorization P' * A * P = U' * U */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {

/*        Find pivot, test for exit, else swap rows and columns */
/*        Update dot products, compute possible pivots which are */
/*        stored in the second half of WORK */

	    i__2 = *n;
	    for (i__ = j; i__ <= i__2; ++i__) {

		if (j > 1) {
/* Computing 2nd power */
		    r__1 = a[j - 1 + i__ * a_dim1];
		    work[i__] += r__1 * r__1;
		}
		work[*n + i__] = a[i__ + i__ * a_dim1] - work[i__];

/* L120: */
	    }

	    if (j > 1) {
		maxlocval = (*n << 1) - (*n + j) + 1;
		itemp = smaxloc_(&work[*n + j], &maxlocval);
		pvt = itemp + j - 1;
		ajj = work[*n + pvt];
		if (ajj <= sstop || sisnan_(&ajj)) {
		    a[j + j * a_dim1] = ajj;
		    goto L160;
		}
	    }

	    if (j != pvt) {

/*              Pivot OK, so can now swap pivot rows and columns */

		a[pvt + pvt * a_dim1] = a[j + j * a_dim1];
		i__2 = j - 1;
		sswap_(&i__2, &a[j * a_dim1 + 1], &c__1, &a[pvt * a_dim1 + 1], 
			 &c__1);
		if (pvt < *n) {
		    i__2 = *n - pvt;
		    sswap_(&i__2, &a[j + (pvt + 1) * a_dim1], lda, &a[pvt + (
			    pvt + 1) * a_dim1], lda);
		}
		i__2 = pvt - j - 1;
		sswap_(&i__2, &a[j + (j + 1) * a_dim1], lda, &a[j + 1 + pvt * 
			a_dim1], &c__1);

/*              Swap dot products and PIV */

		stemp = work[j];
		work[j] = work[pvt];
		work[pvt] = stemp;
		itemp = piv[pvt];
		piv[pvt] = piv[j];
		piv[j] = itemp;
	    }

	    ajj = sqrt(ajj);
	    a[j + j * a_dim1] = ajj;

/*           Compute elements J+1:N of row J */

	    if (j < *n) {
		i__2 = j - 1;
		i__3 = *n - j;
		sgemv_("Trans", &i__2, &i__3, &c_b16, &a[(j + 1) * a_dim1 + 1]
, lda, &a[j * a_dim1 + 1], &c__1, &c_b18, &a[j + (j + 
			1) * a_dim1], lda);
		i__2 = *n - j;
		r__1 = 1.f / ajj;
		sscal_(&i__2, &r__1, &a[j + (j + 1) * a_dim1], lda);
	    }

/* L130: */
	}

    } else {

/*        Compute the Cholesky factorization P' * A * P = L * L' */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {

/*        Find pivot, test for exit, else swap rows and columns */
/*        Update dot products, compute possible pivots which are */
/*        stored in the second half of WORK */

	    i__2 = *n;
	    for (i__ = j; i__ <= i__2; ++i__) {

		if (j > 1) {
/* Computing 2nd power */
		    r__1 = a[i__ + (j - 1) * a_dim1];
		    work[i__] += r__1 * r__1;
		}
		work[*n + i__] = a[i__ + i__ * a_dim1] - work[i__];

/* L140: */
	    }

	    if (j > 1) {
		maxlocval = (*n << 1) - (*n + j) + 1;
		itemp = smaxloc_(&work[*n + j], &maxlocval);
		pvt = itemp + j - 1;
		ajj = work[*n + pvt];
		if (ajj <= sstop || sisnan_(&ajj)) {
		    a[j + j * a_dim1] = ajj;
		    goto L160;
		}
	    }

	    if (j != pvt) {

/*              Pivot OK, so can now swap pivot rows and columns */

		a[pvt + pvt * a_dim1] = a[j + j * a_dim1];
		i__2 = j - 1;
		sswap_(&i__2, &a[j + a_dim1], lda, &a[pvt + a_dim1], lda);
		if (pvt < *n) {
		    i__2 = *n - pvt;
		    sswap_(&i__2, &a[pvt + 1 + j * a_dim1], &c__1, &a[pvt + 1 
			    + pvt * a_dim1], &c__1);
		}
		i__2 = pvt - j - 1;
		sswap_(&i__2, &a[j + 1 + j * a_dim1], &c__1, &a[pvt + (j + 1) 
			* a_dim1], lda);

/*              Swap dot products and PIV */

		stemp = work[j];
		work[j] = work[pvt];
		work[pvt] = stemp;
		itemp = piv[pvt];
		piv[pvt] = piv[j];
		piv[j] = itemp;
	    }

	    ajj = sqrt(ajj);
	    a[j + j * a_dim1] = ajj;

/*           Compute elements J+1:N of column J */

	    if (j < *n) {
		i__2 = *n - j;
		i__3 = j - 1;
		sgemv_("No Trans", &i__2, &i__3, &c_b16, &a[j + 1 + a_dim1], 
			lda, &a[j + a_dim1], lda, &c_b18, &a[j + 1 + j * 
			a_dim1], &c__1);
		i__2 = *n - j;
		r__1 = 1.f / ajj;
		sscal_(&i__2, &r__1, &a[j + 1 + j * a_dim1], &c__1);
	    }

/* L150: */
	}

    }

/*     Ran to completion, A has full rank */

    *rank = *n;

    goto L170;
L160:

/*     Rank is number of steps completed.  Set INFO = 1 to signal */
/*     that the factorization cannot be used to solve a system. */

    *rank = j - 1;
    *info = 1;

L170:
    return 0;

/*     End of SPSTF2 */

} /* spstf2_ */