1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
/* sorghr.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
/* Subroutine */ int sorghr_(integer *n, integer *ilo, integer *ihi, real *a,
integer *lda, real *tau, real *work, integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
/* Local variables */
integer i__, j, nb, nh, iinfo;
extern /* Subroutine */ int xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real
*, integer *, real *, real *, integer *, integer *);
integer lwkopt;
logical lquery;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SORGHR generates a real orthogonal matrix Q which is defined as the */
/* product of IHI-ILO elementary reflectors of order N, as returned by */
/* SGEHRD: */
/* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix Q. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* ILO and IHI must have the same values as in the previous call */
/* of SGEHRD. Q is equal to the unit matrix except in the */
/* submatrix Q(ilo+1:ihi,ilo+1:ihi). */
/* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* A (input/output) REAL array, dimension (LDA,N) */
/* On entry, the vectors which define the elementary reflectors, */
/* as returned by SGEHRD. */
/* On exit, the N-by-N orthogonal matrix Q. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* TAU (input) REAL array, dimension (N-1) */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i), as returned by SGEHRD. */
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= IHI-ILO. */
/* For optimum performance LWORK >= (IHI-ILO)*NB, where NB is */
/* the optimal blocksize. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
nh = *ihi - *ilo;
lquery = *lwork == -1;
if (*n < 0) {
*info = -1;
} else if (*ilo < 1 || *ilo > max(1,*n)) {
*info = -2;
} else if (*ihi < min(*ilo,*n) || *ihi > *n) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
} else if (*lwork < max(1,nh) && ! lquery) {
*info = -8;
}
if (*info == 0) {
nb = ilaenv_(&c__1, "SORGQR", " ", &nh, &nh, &nh, &c_n1);
lwkopt = max(1,nh) * nb;
work[1] = (real) lwkopt;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SORGHR", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
work[1] = 1.f;
return 0;
}
/* Shift the vectors which define the elementary reflectors one */
/* column to the right, and set the first ilo and the last n-ihi */
/* rows and columns to those of the unit matrix */
i__1 = *ilo + 1;
for (j = *ihi; j >= i__1; --j) {
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = 0.f;
/* L10: */
}
i__2 = *ihi;
for (i__ = j + 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1];
/* L20: */
}
i__2 = *n;
for (i__ = *ihi + 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = 0.f;
/* L30: */
}
/* L40: */
}
i__1 = *ilo;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = 0.f;
/* L50: */
}
a[j + j * a_dim1] = 1.f;
/* L60: */
}
i__1 = *n;
for (j = *ihi + 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = 0.f;
/* L70: */
}
a[j + j * a_dim1] = 1.f;
/* L80: */
}
if (nh > 0) {
/* Generate Q(ilo+1:ihi,ilo+1:ihi) */
sorgqr_(&nh, &nh, &nh, &a[*ilo + 1 + (*ilo + 1) * a_dim1], lda, &tau[*
ilo], &work[1], lwork, &iinfo);
}
work[1] = (real) lwkopt;
return 0;
/* End of SORGHR */
} /* sorghr_ */
|