1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/* slasv2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static real c_b3 = 2.f;
static real c_b4 = 1.f;
/* Subroutine */ int slasv2_(real *f, real *g, real *h__, real *ssmin, real *
ssmax, real *snr, real *csr, real *snl, real *csl)
{
/* System generated locals */
real r__1;
/* Builtin functions */
double sqrt(doublereal), r_sign(real *, real *);
/* Local variables */
real a, d__, l, m, r__, s, t, fa, ga, ha, ft, gt, ht, mm, tt, clt, crt,
slt, srt;
integer pmax;
real temp;
logical swap;
real tsign;
logical gasmal;
extern doublereal slamch_(char *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SLASV2 computes the singular value decomposition of a 2-by-2 */
/* triangular matrix */
/* [ F G ] */
/* [ 0 H ]. */
/* On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the */
/* smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and */
/* right singular vectors for abs(SSMAX), giving the decomposition */
/* [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ] */
/* [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ]. */
/* Arguments */
/* ========= */
/* F (input) REAL */
/* The (1,1) element of the 2-by-2 matrix. */
/* G (input) REAL */
/* The (1,2) element of the 2-by-2 matrix. */
/* H (input) REAL */
/* The (2,2) element of the 2-by-2 matrix. */
/* SSMIN (output) REAL */
/* abs(SSMIN) is the smaller singular value. */
/* SSMAX (output) REAL */
/* abs(SSMAX) is the larger singular value. */
/* SNL (output) REAL */
/* CSL (output) REAL */
/* The vector (CSL, SNL) is a unit left singular vector for the */
/* singular value abs(SSMAX). */
/* SNR (output) REAL */
/* CSR (output) REAL */
/* The vector (CSR, SNR) is a unit right singular vector for the */
/* singular value abs(SSMAX). */
/* Further Details */
/* =============== */
/* Any input parameter may be aliased with any output parameter. */
/* Barring over/underflow and assuming a guard digit in subtraction, all */
/* output quantities are correct to within a few units in the last */
/* place (ulps). */
/* In IEEE arithmetic, the code works correctly if one matrix element is */
/* infinite. */
/* Overflow will not occur unless the largest singular value itself */
/* overflows or is within a few ulps of overflow. (On machines with */
/* partial overflow, like the Cray, overflow may occur if the largest */
/* singular value is within a factor of 2 of overflow.) */
/* Underflow is harmless if underflow is gradual. Otherwise, results */
/* may correspond to a matrix modified by perturbations of size near */
/* the underflow threshold. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
ft = *f;
fa = dabs(ft);
ht = *h__;
ha = dabs(*h__);
/* PMAX points to the maximum absolute element of matrix */
/* PMAX = 1 if F largest in absolute values */
/* PMAX = 2 if G largest in absolute values */
/* PMAX = 3 if H largest in absolute values */
pmax = 1;
swap = ha > fa;
if (swap) {
pmax = 3;
temp = ft;
ft = ht;
ht = temp;
temp = fa;
fa = ha;
ha = temp;
/* Now FA .ge. HA */
}
gt = *g;
ga = dabs(gt);
if (ga == 0.f) {
/* Diagonal matrix */
*ssmin = ha;
*ssmax = fa;
clt = 1.f;
crt = 1.f;
slt = 0.f;
srt = 0.f;
} else {
gasmal = TRUE_;
if (ga > fa) {
pmax = 2;
if (fa / ga < slamch_("EPS")) {
/* Case of very large GA */
gasmal = FALSE_;
*ssmax = ga;
if (ha > 1.f) {
*ssmin = fa / (ga / ha);
} else {
*ssmin = fa / ga * ha;
}
clt = 1.f;
slt = ht / gt;
srt = 1.f;
crt = ft / gt;
}
}
if (gasmal) {
/* Normal case */
d__ = fa - ha;
if (d__ == fa) {
/* Copes with infinite F or H */
l = 1.f;
} else {
l = d__ / fa;
}
/* Note that 0 .le. L .le. 1 */
m = gt / ft;
/* Note that abs(M) .le. 1/macheps */
t = 2.f - l;
/* Note that T .ge. 1 */
mm = m * m;
tt = t * t;
s = sqrt(tt + mm);
/* Note that 1 .le. S .le. 1 + 1/macheps */
if (l == 0.f) {
r__ = dabs(m);
} else {
r__ = sqrt(l * l + mm);
}
/* Note that 0 .le. R .le. 1 + 1/macheps */
a = (s + r__) * .5f;
/* Note that 1 .le. A .le. 1 + abs(M) */
*ssmin = ha / a;
*ssmax = fa * a;
if (mm == 0.f) {
/* Note that M is very tiny */
if (l == 0.f) {
t = r_sign(&c_b3, &ft) * r_sign(&c_b4, >);
} else {
t = gt / r_sign(&d__, &ft) + m / t;
}
} else {
t = (m / (s + t) + m / (r__ + l)) * (a + 1.f);
}
l = sqrt(t * t + 4.f);
crt = 2.f / l;
srt = t / l;
clt = (crt + srt * m) / a;
slt = ht / ft * srt / a;
}
}
if (swap) {
*csl = srt;
*snl = crt;
*csr = slt;
*snr = clt;
} else {
*csl = clt;
*snl = slt;
*csr = crt;
*snr = srt;
}
/* Correct signs of SSMAX and SSMIN */
if (pmax == 1) {
tsign = r_sign(&c_b4, csr) * r_sign(&c_b4, csl) * r_sign(&c_b4, f);
}
if (pmax == 2) {
tsign = r_sign(&c_b4, snr) * r_sign(&c_b4, csl) * r_sign(&c_b4, g);
}
if (pmax == 3) {
tsign = r_sign(&c_b4, snr) * r_sign(&c_b4, snl) * r_sign(&c_b4, h__);
}
*ssmax = r_sign(ssmax, &tsign);
r__1 = tsign * r_sign(&c_b4, f) * r_sign(&c_b4, h__);
*ssmin = r_sign(ssmin, &r__1);
return 0;
/* End of SLASV2 */
} /* slasv2_ */
|