aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slasq2.c
blob: 00d11ccbfcee10fed11dfd61f1780eb37be78a51 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/* slasq2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c__2 = 2;

/* Subroutine */ int slasq2_(integer *n, real *z__, integer *info)
{
    /* System generated locals */
    integer i__1, i__2, i__3;
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    real d__, e, g;
    integer k;
    real s, t;
    integer i0, i4, n0;
    real dn;
    integer pp;
    real dn1, dn2, dee, eps, tau, tol;
    integer ipn4;
    real tol2;
    logical ieee;
    integer nbig;
    real dmin__, emin, emax;
    integer kmin, ndiv, iter;
    real qmin, temp, qmax, zmax;
    integer splt;
    real dmin1, dmin2;
    integer nfail;
    real desig, trace, sigma;
    integer iinfo, ttype;
    extern /* Subroutine */ int slasq3_(integer *, integer *, real *, integer 
	    *, real *, real *, real *, real *, integer *, integer *, integer *
, logical *, integer *, real *, real *, real *, real *, real *, 
	    real *, real *);
    real deemin;
    extern doublereal slamch_(char *);
    integer iwhila, iwhilb;
    real oldemn, safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *), slasrt_(
	    char *, integer *, real *, integer *);


/*  -- LAPACK routine (version 3.2)                                    -- */

/*  -- Contributed by Osni Marques of the Lawrence Berkeley National   -- */
/*  -- Laboratory and Beresford Parlett of the Univ. of California at  -- */
/*  -- Berkeley                                                        -- */
/*  -- November 2008                                                   -- */

/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLASQ2 computes all the eigenvalues of the symmetric positive */
/*  definite tridiagonal matrix associated with the qd array Z to high */
/*  relative accuracy are computed to high relative accuracy, in the */
/*  absence of denormalization, underflow and overflow. */

/*  To see the relation of Z to the tridiagonal matrix, let L be a */
/*  unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and */
/*  let U be an upper bidiagonal matrix with 1's above and diagonal */
/*  Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the */
/*  symmetric tridiagonal to which it is similar. */

/*  Note : SLASQ2 defines a logical variable, IEEE, which is true */
/*  on machines which follow ieee-754 floating-point standard in their */
/*  handling of infinities and NaNs, and false otherwise. This variable */
/*  is passed to SLASQ3. */

/*  Arguments */
/*  ========= */

/*  N     (input) INTEGER */
/*        The number of rows and columns in the matrix. N >= 0. */

/*  Z     (input/output) REAL array, dimension ( 4*N ) */
/*        On entry Z holds the qd array. On exit, entries 1 to N hold */
/*        the eigenvalues in decreasing order, Z( 2*N+1 ) holds the */
/*        trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If */
/*        N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) */
/*        holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of */
/*        shifts that failed. */

/*  INFO  (output) INTEGER */
/*        = 0: successful exit */
/*        < 0: if the i-th argument is a scalar and had an illegal */
/*             value, then INFO = -i, if the i-th argument is an */
/*             array and the j-entry had an illegal value, then */
/*             INFO = -(i*100+j) */
/*        > 0: the algorithm failed */
/*              = 1, a split was marked by a positive value in E */
/*              = 2, current block of Z not diagonalized after 30*N */
/*                   iterations (in inner while loop) */
/*              = 3, termination criterion of outer while loop not met */
/*                   (program created more than N unreduced blocks) */

/*  Further Details */
/*  =============== */
/*  Local Variables: I0:N0 defines a current unreduced segment of Z. */
/*  The shifts are accumulated in SIGMA. Iteration count is in ITER. */
/*  Ping-pong is controlled by PP (alternates between 0 and 1). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments. */
/*     (in case SLASQ2 is not called by SLASQ1) */

    /* Parameter adjustments */
    --z__;

    /* Function Body */
    *info = 0;
    eps = slamch_("Precision");
    safmin = slamch_("Safe minimum");
    tol = eps * 100.f;
/* Computing 2nd power */
    r__1 = tol;
    tol2 = r__1 * r__1;

    if (*n < 0) {
	*info = -1;
	xerbla_("SLASQ2", &c__1);
	return 0;
    } else if (*n == 0) {
	return 0;
    } else if (*n == 1) {

/*        1-by-1 case. */

	if (z__[1] < 0.f) {
	    *info = -201;
	    xerbla_("SLASQ2", &c__2);
	}
	return 0;
    } else if (*n == 2) {

/*        2-by-2 case. */

	if (z__[2] < 0.f || z__[3] < 0.f) {
	    *info = -2;
	    xerbla_("SLASQ2", &c__2);
	    return 0;
	} else if (z__[3] > z__[1]) {
	    d__ = z__[3];
	    z__[3] = z__[1];
	    z__[1] = d__;
	}
	z__[5] = z__[1] + z__[2] + z__[3];
	if (z__[2] > z__[3] * tol2) {
	    t = (z__[1] - z__[3] + z__[2]) * .5f;
	    s = z__[3] * (z__[2] / t);
	    if (s <= t) {
		s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.f) + 1.f)));
	    } else {
		s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s)));
	    }
	    t = z__[1] + (s + z__[2]);
	    z__[3] *= z__[1] / t;
	    z__[1] = t;
	}
	z__[2] = z__[3];
	z__[6] = z__[2] + z__[1];
	return 0;
    }

/*     Check for negative data and compute sums of q's and e's. */

    z__[*n * 2] = 0.f;
    emin = z__[2];
    qmax = 0.f;
    zmax = 0.f;
    d__ = 0.f;
    e = 0.f;

    i__1 = *n - 1 << 1;
    for (k = 1; k <= i__1; k += 2) {
	if (z__[k] < 0.f) {
	    *info = -(k + 200);
	    xerbla_("SLASQ2", &c__2);
	    return 0;
	} else if (z__[k + 1] < 0.f) {
	    *info = -(k + 201);
	    xerbla_("SLASQ2", &c__2);
	    return 0;
	}
	d__ += z__[k];
	e += z__[k + 1];
/* Computing MAX */
	r__1 = qmax, r__2 = z__[k];
	qmax = dmax(r__1,r__2);
/* Computing MIN */
	r__1 = emin, r__2 = z__[k + 1];
	emin = dmin(r__1,r__2);
/* Computing MAX */
	r__1 = max(qmax,zmax), r__2 = z__[k + 1];
	zmax = dmax(r__1,r__2);
/* L10: */
    }
    if (z__[(*n << 1) - 1] < 0.f) {
	*info = -((*n << 1) + 199);
	xerbla_("SLASQ2", &c__2);
	return 0;
    }
    d__ += z__[(*n << 1) - 1];
/* Computing MAX */
    r__1 = qmax, r__2 = z__[(*n << 1) - 1];
    qmax = dmax(r__1,r__2);
    zmax = dmax(qmax,zmax);

/*     Check for diagonality. */

    if (e == 0.f) {
	i__1 = *n;
	for (k = 2; k <= i__1; ++k) {
	    z__[k] = z__[(k << 1) - 1];
/* L20: */
	}
	slasrt_("D", n, &z__[1], &iinfo);
	z__[(*n << 1) - 1] = d__;
	return 0;
    }

    trace = d__ + e;

/*     Check for zero data. */

    if (trace == 0.f) {
	z__[(*n << 1) - 1] = 0.f;
	return 0;
    }

/*     Check whether the machine is IEEE conformable. */

/*     IEEE = ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND. */
/*    $       ILAENV( 11, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 */

/*     [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with */
/*     some the test matrices of type 16. The double precision code is fine. */

    ieee = FALSE_;

/*     Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */

    for (k = *n << 1; k >= 2; k += -2) {
	z__[k * 2] = 0.f;
	z__[(k << 1) - 1] = z__[k];
	z__[(k << 1) - 2] = 0.f;
	z__[(k << 1) - 3] = z__[k - 1];
/* L30: */
    }

    i0 = 1;
    n0 = *n;

/*     Reverse the qd-array, if warranted. */

    if (z__[(i0 << 2) - 3] * 1.5f < z__[(n0 << 2) - 3]) {
	ipn4 = i0 + n0 << 2;
	i__1 = i0 + n0 - 1 << 1;
	for (i4 = i0 << 2; i4 <= i__1; i4 += 4) {
	    temp = z__[i4 - 3];
	    z__[i4 - 3] = z__[ipn4 - i4 - 3];
	    z__[ipn4 - i4 - 3] = temp;
	    temp = z__[i4 - 1];
	    z__[i4 - 1] = z__[ipn4 - i4 - 5];
	    z__[ipn4 - i4 - 5] = temp;
/* L40: */
	}
    }

/*     Initial split checking via dqd and Li's test. */

    pp = 0;

    for (k = 1; k <= 2; ++k) {

	d__ = z__[(n0 << 2) + pp - 3];
	i__1 = (i0 << 2) + pp;
	for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) {
	    if (z__[i4 - 1] <= tol2 * d__) {
		z__[i4 - 1] = -0.f;
		d__ = z__[i4 - 3];
	    } else {
		d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1]));
	    }
/* L50: */
	}

/*        dqd maps Z to ZZ plus Li's test. */

	emin = z__[(i0 << 2) + pp + 1];
	d__ = z__[(i0 << 2) + pp - 3];
	i__1 = (n0 - 1 << 2) + pp;
	for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) {
	    z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1];
	    if (z__[i4 - 1] <= tol2 * d__) {
		z__[i4 - 1] = -0.f;
		z__[i4 - (pp << 1) - 2] = d__;
		z__[i4 - (pp << 1)] = 0.f;
		d__ = z__[i4 + 1];
	    } else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] && 
		    safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) {
		temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2];
		z__[i4 - (pp << 1)] = z__[i4 - 1] * temp;
		d__ *= temp;
	    } else {
		z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - (
			pp << 1) - 2]);
		d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]);
	    }
/* Computing MIN */
	    r__1 = emin, r__2 = z__[i4 - (pp << 1)];
	    emin = dmin(r__1,r__2);
/* L60: */
	}
	z__[(n0 << 2) - pp - 2] = d__;

/*        Now find qmax. */

	qmax = z__[(i0 << 2) - pp - 2];
	i__1 = (n0 << 2) - pp - 2;
	for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) {
/* Computing MAX */
	    r__1 = qmax, r__2 = z__[i4];
	    qmax = dmax(r__1,r__2);
/* L70: */
	}

/*        Prepare for the next iteration on K. */

	pp = 1 - pp;
/* L80: */
    }

/*     Initialise variables to pass to SLASQ3. */

    ttype = 0;
    dmin1 = 0.f;
    dmin2 = 0.f;
    dn = 0.f;
    dn1 = 0.f;
    dn2 = 0.f;
    g = 0.f;
    tau = 0.f;

    iter = 2;
    nfail = 0;
    ndiv = n0 - i0 << 1;

    i__1 = *n + 1;
    for (iwhila = 1; iwhila <= i__1; ++iwhila) {
	if (n0 < 1) {
	    goto L170;
	}

/*        While array unfinished do */

/*        E(N0) holds the value of SIGMA when submatrix in I0:N0 */
/*        splits from the rest of the array, but is negated. */

	desig = 0.f;
	if (n0 == *n) {
	    sigma = 0.f;
	} else {
	    sigma = -z__[(n0 << 2) - 1];
	}
	if (sigma < 0.f) {
	    *info = 1;
	    return 0;
	}

/*        Find last unreduced submatrix's top index I0, find QMAX and */
/*        EMIN. Find Gershgorin-type bound if Q's much greater than E's. */

	emax = 0.f;
	if (n0 > i0) {
	    emin = (r__1 = z__[(n0 << 2) - 5], dabs(r__1));
	} else {
	    emin = 0.f;
	}
	qmin = z__[(n0 << 2) - 3];
	qmax = qmin;
	for (i4 = n0 << 2; i4 >= 8; i4 += -4) {
	    if (z__[i4 - 5] <= 0.f) {
		goto L100;
	    }
	    if (qmin >= emax * 4.f) {
/* Computing MIN */
		r__1 = qmin, r__2 = z__[i4 - 3];
		qmin = dmin(r__1,r__2);
/* Computing MAX */
		r__1 = emax, r__2 = z__[i4 - 5];
		emax = dmax(r__1,r__2);
	    }
/* Computing MAX */
	    r__1 = qmax, r__2 = z__[i4 - 7] + z__[i4 - 5];
	    qmax = dmax(r__1,r__2);
/* Computing MIN */
	    r__1 = emin, r__2 = z__[i4 - 5];
	    emin = dmin(r__1,r__2);
/* L90: */
	}
	i4 = 4;

L100:
	i0 = i4 / 4;
	pp = 0;

	if (n0 - i0 > 1) {
	    dee = z__[(i0 << 2) - 3];
	    deemin = dee;
	    kmin = i0;
	    i__2 = (n0 << 2) - 3;
	    for (i4 = (i0 << 2) + 1; i4 <= i__2; i4 += 4) {
		dee = z__[i4] * (dee / (dee + z__[i4 - 2]));
		if (dee <= deemin) {
		    deemin = dee;
		    kmin = (i4 + 3) / 4;
		}
/* L110: */
	    }
	    if (kmin - i0 << 1 < n0 - kmin && deemin <= z__[(n0 << 2) - 3] * 
		    .5f) {
		ipn4 = i0 + n0 << 2;
		pp = 2;
		i__2 = i0 + n0 - 1 << 1;
		for (i4 = i0 << 2; i4 <= i__2; i4 += 4) {
		    temp = z__[i4 - 3];
		    z__[i4 - 3] = z__[ipn4 - i4 - 3];
		    z__[ipn4 - i4 - 3] = temp;
		    temp = z__[i4 - 2];
		    z__[i4 - 2] = z__[ipn4 - i4 - 2];
		    z__[ipn4 - i4 - 2] = temp;
		    temp = z__[i4 - 1];
		    z__[i4 - 1] = z__[ipn4 - i4 - 5];
		    z__[ipn4 - i4 - 5] = temp;
		    temp = z__[i4];
		    z__[i4] = z__[ipn4 - i4 - 4];
		    z__[ipn4 - i4 - 4] = temp;
/* L120: */
		}
	    }
	}

/*        Put -(initial shift) into DMIN. */

/* Computing MAX */
	r__1 = 0.f, r__2 = qmin - sqrt(qmin) * 2.f * sqrt(emax);
	dmin__ = -dmax(r__1,r__2);

/*        Now I0:N0 is unreduced. */
/*        PP = 0 for ping, PP = 1 for pong. */
/*        PP = 2 indicates that flipping was applied to the Z array and */
/*               and that the tests for deflation upon entry in SLASQ3 */
/*               should not be performed. */

	nbig = (n0 - i0 + 1) * 30;
	i__2 = nbig;
	for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) {
	    if (i0 > n0) {
		goto L150;
	    }

/*           While submatrix unfinished take a good dqds step. */

	    slasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, &
		    nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, &
		    dn1, &dn2, &g, &tau);

	    pp = 1 - pp;

/*           When EMIN is very small check for splits. */

	    if (pp == 0 && n0 - i0 >= 3) {
		if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 *
			 sigma) {
		    splt = i0 - 1;
		    qmax = z__[(i0 << 2) - 3];
		    emin = z__[(i0 << 2) - 1];
		    oldemn = z__[i0 * 4];
		    i__3 = n0 - 3 << 2;
		    for (i4 = i0 << 2; i4 <= i__3; i4 += 4) {
			if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <= 
				tol2 * sigma) {
			    z__[i4 - 1] = -sigma;
			    splt = i4 / 4;
			    qmax = 0.f;
			    emin = z__[i4 + 3];
			    oldemn = z__[i4 + 4];
			} else {
/* Computing MAX */
			    r__1 = qmax, r__2 = z__[i4 + 1];
			    qmax = dmax(r__1,r__2);
/* Computing MIN */
			    r__1 = emin, r__2 = z__[i4 - 1];
			    emin = dmin(r__1,r__2);
/* Computing MIN */
			    r__1 = oldemn, r__2 = z__[i4];
			    oldemn = dmin(r__1,r__2);
			}
/* L130: */
		    }
		    z__[(n0 << 2) - 1] = emin;
		    z__[n0 * 4] = oldemn;
		    i0 = splt + 1;
		}
	    }

/* L140: */
	}

	*info = 2;
	return 0;

/*        end IWHILB */

L150:

/* L160: */
	;
    }

    *info = 3;
    return 0;

/*     end IWHILA */

L170:

/*     Move q's to the front. */

    i__1 = *n;
    for (k = 2; k <= i__1; ++k) {
	z__[k] = z__[(k << 2) - 3];
/* L180: */
    }

/*     Sort and compute sum of eigenvalues. */

    slasrt_("D", n, &z__[1], &iinfo);

    e = 0.f;
    for (k = *n; k >= 1; --k) {
	e += z__[k];
/* L190: */
    }

/*     Store trace, sum(eigenvalues) and information on performance. */

    z__[(*n << 1) + 1] = trace;
    z__[(*n << 1) + 2] = e;
    z__[(*n << 1) + 3] = (real) iter;
/* Computing 2nd power */
    i__1 = *n;
    z__[(*n << 1) + 4] = (real) ndiv / (real) (i__1 * i__1);
    z__[(*n << 1) + 5] = nfail * 100.f / (real) iter;
    return 0;

/*     End of SLASQ2 */

} /* slasq2_ */