aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slasq1.c
blob: b812d239569749876d5110cd0584b8bfd307137d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/* slasq1.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c__2 = 2;
static integer c__0 = 0;

/* Subroutine */ int slasq1_(integer *n, real *d__, real *e, real *work, 
	integer *info)
{
    /* System generated locals */
    integer i__1, i__2;
    real r__1, r__2, r__3;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__;
    real eps;
    extern /* Subroutine */ int slas2_(real *, real *, real *, real *, real *)
	    ;
    real scale;
    integer iinfo;
    real sigmn, sigmx;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), slasq2_(integer *, real *, integer *);
    extern doublereal slamch_(char *);
    real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *), slascl_(
	    char *, integer *, integer *, real *, real *, integer *, integer *
, real *, integer *, integer *), slasrt_(char *, integer *
, real *, integer *);


/*  -- LAPACK routine (version 3.2)                                    -- */

/*  -- Contributed by Osni Marques of the Lawrence Berkeley National   -- */
/*  -- Laboratory and Beresford Parlett of the Univ. of California at  -- */
/*  -- Berkeley                                                        -- */
/*  -- November 2008                                                   -- */

/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLASQ1 computes the singular values of a real N-by-N bidiagonal */
/*  matrix with diagonal D and off-diagonal E. The singular values */
/*  are computed to high relative accuracy, in the absence of */
/*  denormalization, underflow and overflow. The algorithm was first */
/*  presented in */

/*  "Accurate singular values and differential qd algorithms" by K. V. */
/*  Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230, */
/*  1994, */

/*  and the present implementation is described in "An implementation of */
/*  the dqds Algorithm (Positive Case)", LAPACK Working Note. */

/*  Arguments */
/*  ========= */

/*  N     (input) INTEGER */
/*        The number of rows and columns in the matrix. N >= 0. */

/*  D     (input/output) REAL array, dimension (N) */
/*        On entry, D contains the diagonal elements of the */
/*        bidiagonal matrix whose SVD is desired. On normal exit, */
/*        D contains the singular values in decreasing order. */

/*  E     (input/output) REAL array, dimension (N) */
/*        On entry, elements E(1:N-1) contain the off-diagonal elements */
/*        of the bidiagonal matrix whose SVD is desired. */
/*        On exit, E is overwritten. */

/*  WORK  (workspace) REAL array, dimension (4*N) */

/*  INFO  (output) INTEGER */
/*        = 0: successful exit */
/*        < 0: if INFO = -i, the i-th argument had an illegal value */
/*        > 0: the algorithm failed */
/*             = 1, a split was marked by a positive value in E */
/*             = 2, current block of Z not diagonalized after 30*N */
/*                  iterations (in inner while loop) */
/*             = 3, termination criterion of outer while loop not met */
/*                  (program created more than N unreduced blocks) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --work;
    --e;
    --d__;

    /* Function Body */
    *info = 0;
    if (*n < 0) {
	*info = -2;
	i__1 = -(*info);
	xerbla_("SLASQ1", &i__1);
	return 0;
    } else if (*n == 0) {
	return 0;
    } else if (*n == 1) {
	d__[1] = dabs(d__[1]);
	return 0;
    } else if (*n == 2) {
	slas2_(&d__[1], &e[1], &d__[2], &sigmn, &sigmx);
	d__[1] = sigmx;
	d__[2] = sigmn;
	return 0;
    }

/*     Estimate the largest singular value. */

    sigmx = 0.f;
    i__1 = *n - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	d__[i__] = (r__1 = d__[i__], dabs(r__1));
/* Computing MAX */
	r__2 = sigmx, r__3 = (r__1 = e[i__], dabs(r__1));
	sigmx = dmax(r__2,r__3);
/* L10: */
    }
    d__[*n] = (r__1 = d__[*n], dabs(r__1));

/*     Early return if SIGMX is zero (matrix is already diagonal). */

    if (sigmx == 0.f) {
	slasrt_("D", n, &d__[1], &iinfo);
	return 0;
    }

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	r__1 = sigmx, r__2 = d__[i__];
	sigmx = dmax(r__1,r__2);
/* L20: */
    }

/*     Copy D and E into WORK (in the Z format) and scale (squaring the */
/*     input data makes scaling by a power of the radix pointless). */

    eps = slamch_("Precision");
    safmin = slamch_("Safe minimum");
    scale = sqrt(eps / safmin);
    scopy_(n, &d__[1], &c__1, &work[1], &c__2);
    i__1 = *n - 1;
    scopy_(&i__1, &e[1], &c__1, &work[2], &c__2);
    i__1 = (*n << 1) - 1;
    i__2 = (*n << 1) - 1;
    slascl_("G", &c__0, &c__0, &sigmx, &scale, &i__1, &c__1, &work[1], &i__2, 
	    &iinfo);

/*     Compute the q's and e's. */

    i__1 = (*n << 1) - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing 2nd power */
	r__1 = work[i__];
	work[i__] = r__1 * r__1;
/* L30: */
    }
    work[*n * 2] = 0.f;

    slasq2_(n, &work[1], info);

    if (*info == 0) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    d__[i__] = sqrt(work[i__]);
/* L40: */
	}
	slascl_("G", &c__0, &c__0, &scale, &sigmx, n, &c__1, &d__[1], n, &
		iinfo);
    }

    return 0;

/*     End of SLASQ1 */

} /* slasq1_ */