1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
/* slasda.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__0 = 0;
static real c_b11 = 0.f;
static real c_b12 = 1.f;
static integer c__1 = 1;
static integer c__2 = 2;
/* Subroutine */ int slasda_(integer *icompq, integer *smlsiz, integer *n,
integer *sqre, real *d__, real *e, real *u, integer *ldu, real *vt,
integer *k, real *difl, real *difr, real *z__, real *poles, integer *
givptr, integer *givcol, integer *ldgcol, integer *perm, real *givnum,
real *c__, real *s, real *work, integer *iwork, integer *info)
{
/* System generated locals */
integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1,
difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset,
poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset,
z_dim1, z_offset, i__1, i__2;
/* Builtin functions */
integer pow_ii(integer *, integer *);
/* Local variables */
integer i__, j, m, i1, ic, lf, nd, ll, nl, vf, nr, vl, im1, ncc, nlf, nrf,
vfi, iwk, vli, lvl, nru, ndb1, nlp1, lvl2, nrp1;
real beta;
integer idxq, nlvl;
real alpha;
integer inode, ndiml, ndimr, idxqi, itemp, sqrei;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *), slasd6_(integer *, integer *, integer *, integer *,
real *, real *, real *, real *, real *, integer *, integer *,
integer *, integer *, integer *, real *, integer *, real *, real *
, real *, real *, integer *, real *, real *, real *, integer *,
integer *);
integer nwork1, nwork2;
extern /* Subroutine */ int xerbla_(char *, integer *), slasdq_(
char *, integer *, integer *, integer *, integer *, integer *,
real *, real *, real *, integer *, real *, integer *, real *,
integer *, real *, integer *), slasdt_(integer *, integer
*, integer *, integer *, integer *, integer *, integer *),
slaset_(char *, integer *, integer *, real *, real *, real *,
integer *);
integer smlszp;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* Using a divide and conquer approach, SLASDA computes the singular */
/* value decomposition (SVD) of a real upper bidiagonal N-by-M matrix */
/* B with diagonal D and offdiagonal E, where M = N + SQRE. The */
/* algorithm computes the singular values in the SVD B = U * S * VT. */
/* The orthogonal matrices U and VT are optionally computed in */
/* compact form. */
/* A related subroutine, SLASD0, computes the singular values and */
/* the singular vectors in explicit form. */
/* Arguments */
/* ========= */
/* ICOMPQ (input) INTEGER */
/* Specifies whether singular vectors are to be computed */
/* in compact form, as follows */
/* = 0: Compute singular values only. */
/* = 1: Compute singular vectors of upper bidiagonal */
/* matrix in compact form. */
/* SMLSIZ (input) INTEGER */
/* The maximum size of the subproblems at the bottom of the */
/* computation tree. */
/* N (input) INTEGER */
/* The row dimension of the upper bidiagonal matrix. This is */
/* also the dimension of the main diagonal array D. */
/* SQRE (input) INTEGER */
/* Specifies the column dimension of the bidiagonal matrix. */
/* = 0: The bidiagonal matrix has column dimension M = N; */
/* = 1: The bidiagonal matrix has column dimension M = N + 1. */
/* D (input/output) REAL array, dimension ( N ) */
/* On entry D contains the main diagonal of the bidiagonal */
/* matrix. On exit D, if INFO = 0, contains its singular values. */
/* E (input) REAL array, dimension ( M-1 ) */
/* Contains the subdiagonal entries of the bidiagonal matrix. */
/* On exit, E has been destroyed. */
/* U (output) REAL array, */
/* dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced */
/* if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left */
/* singular vector matrices of all subproblems at the bottom */
/* level. */
/* LDU (input) INTEGER, LDU = > N. */
/* The leading dimension of arrays U, VT, DIFL, DIFR, POLES, */
/* GIVNUM, and Z. */
/* VT (output) REAL array, */
/* dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced */
/* if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right */
/* singular vector matrices of all subproblems at the bottom */
/* level. */
/* K (output) INTEGER array, dimension ( N ) */
/* if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. */
/* If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th */
/* secular equation on the computation tree. */
/* DIFL (output) REAL array, dimension ( LDU, NLVL ), */
/* where NLVL = floor(log_2 (N/SMLSIZ))). */
/* DIFR (output) REAL array, */
/* dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and */
/* dimension ( N ) if ICOMPQ = 0. */
/* If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) */
/* record distances between singular values on the I-th */
/* level and singular values on the (I -1)-th level, and */
/* DIFR(1:N, 2 * I ) contains the normalizing factors for */
/* the right singular vector matrix. See SLASD8 for details. */
/* Z (output) REAL array, */
/* dimension ( LDU, NLVL ) if ICOMPQ = 1 and */
/* dimension ( N ) if ICOMPQ = 0. */
/* The first K elements of Z(1, I) contain the components of */
/* the deflation-adjusted updating row vector for subproblems */
/* on the I-th level. */
/* POLES (output) REAL array, */
/* dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced */
/* if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and */
/* POLES(1, 2*I) contain the new and old singular values */
/* involved in the secular equations on the I-th level. */
/* GIVPTR (output) INTEGER array, */
/* dimension ( N ) if ICOMPQ = 1, and not referenced if */
/* ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records */
/* the number of Givens rotations performed on the I-th */
/* problem on the computation tree. */
/* GIVCOL (output) INTEGER array, */
/* dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not */
/* referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
/* GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations */
/* of Givens rotations performed on the I-th level on the */
/* computation tree. */
/* LDGCOL (input) INTEGER, LDGCOL = > N. */
/* The leading dimension of arrays GIVCOL and PERM. */
/* PERM (output) INTEGER array, dimension ( LDGCOL, NLVL ) */
/* if ICOMPQ = 1, and not referenced */
/* if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records */
/* permutations done on the I-th level of the computation tree. */
/* GIVNUM (output) REAL array, */
/* dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not */
/* referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
/* GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- */
/* values of Givens rotations performed on the I-th level on */
/* the computation tree. */
/* C (output) REAL array, */
/* dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. */
/* If ICOMPQ = 1 and the I-th subproblem is not square, on exit, */
/* C( I ) contains the C-value of a Givens rotation related to */
/* the right null space of the I-th subproblem. */
/* S (output) REAL array, dimension ( N ) if */
/* ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 */
/* and the I-th subproblem is not square, on exit, S( I ) */
/* contains the S-value of a Givens rotation related to */
/* the right null space of the I-th subproblem. */
/* WORK (workspace) REAL array, dimension */
/* (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). */
/* IWORK (workspace) INTEGER array, dimension (7*N). */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: if INFO = 1, an singular value did not converge */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Ming Gu and Huan Ren, Computer Science Division, University of */
/* California at Berkeley, USA */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
givnum_dim1 = *ldu;
givnum_offset = 1 + givnum_dim1;
givnum -= givnum_offset;
poles_dim1 = *ldu;
poles_offset = 1 + poles_dim1;
poles -= poles_offset;
z_dim1 = *ldu;
z_offset = 1 + z_dim1;
z__ -= z_offset;
difr_dim1 = *ldu;
difr_offset = 1 + difr_dim1;
difr -= difr_offset;
difl_dim1 = *ldu;
difl_offset = 1 + difl_dim1;
difl -= difl_offset;
vt_dim1 = *ldu;
vt_offset = 1 + vt_dim1;
vt -= vt_offset;
u_dim1 = *ldu;
u_offset = 1 + u_dim1;
u -= u_offset;
--k;
--givptr;
perm_dim1 = *ldgcol;
perm_offset = 1 + perm_dim1;
perm -= perm_offset;
givcol_dim1 = *ldgcol;
givcol_offset = 1 + givcol_dim1;
givcol -= givcol_offset;
--c__;
--s;
--work;
--iwork;
/* Function Body */
*info = 0;
if (*icompq < 0 || *icompq > 1) {
*info = -1;
} else if (*smlsiz < 3) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*sqre < 0 || *sqre > 1) {
*info = -4;
} else if (*ldu < *n + *sqre) {
*info = -8;
} else if (*ldgcol < *n) {
*info = -17;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SLASDA", &i__1);
return 0;
}
m = *n + *sqre;
/* If the input matrix is too small, call SLASDQ to find the SVD. */
if (*n <= *smlsiz) {
if (*icompq == 0) {
slasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, &
work[1], info);
} else {
slasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
, ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1],
info);
}
return 0;
}
/* Book-keeping and set up the computation tree. */
inode = 1;
ndiml = inode + *n;
ndimr = ndiml + *n;
idxq = ndimr + *n;
iwk = idxq + *n;
ncc = 0;
nru = 0;
smlszp = *smlsiz + 1;
vf = 1;
vl = vf + m;
nwork1 = vl + m;
nwork2 = nwork1 + smlszp * smlszp;
slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
smlsiz);
/* for the nodes on bottom level of the tree, solve */
/* their subproblems by SLASDQ. */
ndb1 = (nd + 1) / 2;
i__1 = nd;
for (i__ = ndb1; i__ <= i__1; ++i__) {
/* IC : center row of each node */
/* NL : number of rows of left subproblem */
/* NR : number of rows of right subproblem */
/* NLF: starting row of the left subproblem */
/* NRF: starting row of the right subproblem */
i1 = i__ - 1;
ic = iwork[inode + i1];
nl = iwork[ndiml + i1];
nlp1 = nl + 1;
nr = iwork[ndimr + i1];
nlf = ic - nl;
nrf = ic + 1;
idxqi = idxq + nlf - 2;
vfi = vf + nlf - 1;
vli = vl + nlf - 1;
sqrei = 1;
if (*icompq == 0) {
slaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
slasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], &
work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2],
&nl, &work[nwork2], info);
itemp = nwork1 + nl * smlszp;
scopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1);
scopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1);
} else {
slaset_("A", &nl, &nl, &c_b11, &c_b12, &u[nlf + u_dim1], ldu);
slaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt[nlf + vt_dim1],
ldu);
slasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &
vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf +
u_dim1], ldu, &work[nwork1], info);
scopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1);
scopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1)
;
}
if (*info != 0) {
return 0;
}
i__2 = nl;
for (j = 1; j <= i__2; ++j) {
iwork[idxqi + j] = j;
/* L10: */
}
if (i__ == nd && *sqre == 0) {
sqrei = 0;
} else {
sqrei = 1;
}
idxqi += nlp1;
vfi += nlp1;
vli += nlp1;
nrp1 = nr + sqrei;
if (*icompq == 0) {
slaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
slasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], &
work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2],
&nr, &work[nwork2], info);
itemp = nwork1 + (nrp1 - 1) * smlszp;
scopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1);
scopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1);
} else {
slaset_("A", &nr, &nr, &c_b11, &c_b12, &u[nrf + u_dim1], ldu);
slaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt[nrf + vt_dim1],
ldu);
slasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &
vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf +
u_dim1], ldu, &work[nwork1], info);
scopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1);
scopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1)
;
}
if (*info != 0) {
return 0;
}
i__2 = nr;
for (j = 1; j <= i__2; ++j) {
iwork[idxqi + j] = j;
/* L20: */
}
/* L30: */
}
/* Now conquer each subproblem bottom-up. */
j = pow_ii(&c__2, &nlvl);
for (lvl = nlvl; lvl >= 1; --lvl) {
lvl2 = (lvl << 1) - 1;
/* Find the first node LF and last node LL on */
/* the current level LVL. */
if (lvl == 1) {
lf = 1;
ll = 1;
} else {
i__1 = lvl - 1;
lf = pow_ii(&c__2, &i__1);
ll = (lf << 1) - 1;
}
i__1 = ll;
for (i__ = lf; i__ <= i__1; ++i__) {
im1 = i__ - 1;
ic = iwork[inode + im1];
nl = iwork[ndiml + im1];
nr = iwork[ndimr + im1];
nlf = ic - nl;
nrf = ic + 1;
if (i__ == ll) {
sqrei = *sqre;
} else {
sqrei = 1;
}
vfi = vf + nlf - 1;
vli = vl + nlf - 1;
idxqi = idxq + nlf - 1;
alpha = d__[ic];
beta = e[ic];
if (*icompq == 0) {
slasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
work[vli], &alpha, &beta, &iwork[idxqi], &perm[
perm_offset], &givptr[1], &givcol[givcol_offset],
ldgcol, &givnum[givnum_offset], ldu, &poles[
poles_offset], &difl[difl_offset], &difr[difr_offset],
&z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1],
&iwork[iwk], info);
} else {
--j;
slasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf +
lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 *
givcol_dim1], ldgcol, &givnum[nlf + lvl2 *
givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &
difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 *
difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j],
&s[j], &work[nwork1], &iwork[iwk], info);
}
if (*info != 0) {
return 0;
}
/* L40: */
}
/* L50: */
}
return 0;
/* End of SLASDA */
} /* slasda_ */
|