aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slarrv.c
blob: c1dc8592cd0ae27ccd1f36413dc98b3b8151c7a8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
/* slarrv.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static real c_b5 = 0.f;
static integer c__1 = 1;
static integer c__2 = 2;

/* Subroutine */ int slarrv_(integer *n, real *vl, real *vu, real *d__, real *
	l, real *pivmin, integer *isplit, integer *m, integer *dol, integer *
	dou, real *minrgp, real *rtol1, real *rtol2, real *w, real *werr, 
	real *wgap, integer *iblock, integer *indexw, real *gers, real *z__, 
	integer *ldz, integer *isuppz, real *work, integer *iwork, integer *
	info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
    real r__1, r__2;
    logical L__1;

    /* Builtin functions */
    double log(doublereal);

    /* Local variables */
    integer minwsize, i__, j, k, p, q, miniwsize, ii;
    real gl;
    integer im, in;
    real gu, gap, eps, tau, tol, tmp;
    integer zto;
    real ztz;
    integer iend, jblk;
    real lgap;
    integer done;
    real rgap, left;
    integer wend, iter;
    real bstw;
    integer itmp1, indld;
    real fudge;
    integer idone;
    real sigma;
    integer iinfo, iindr;
    real resid;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    logical eskip;
    real right;
    integer nclus, zfrom;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    real rqtol;
    integer iindc1, iindc2;
    extern /* Subroutine */ int slar1v_(integer *, integer *, integer *, real 
	    *, real *, real *, real *, real *, real *, real *, real *, 
	    logical *, integer *, real *, real *, integer *, integer *, real *
, real *, real *, real *);
    logical stp2ii;
    real lambda;
    integer ibegin, indeig;
    logical needbs;
    integer indlld;
    real sgndef, mingma;
    extern doublereal slamch_(char *);
    integer oldien, oldncl, wbegin;
    real spdiam;
    integer negcnt, oldcls;
    real savgap;
    integer ndepth;
    real ssigma;
    logical usedbs;
    integer iindwk, offset;
    real gaptol;
    extern /* Subroutine */ int slarrb_(integer *, real *, real *, integer *, 
	    integer *, real *, real *, integer *, real *, real *, real *, 
	    real *, integer *, real *, real *, integer *, integer *), slarrf_(
	    integer *, real *, real *, real *, integer *, integer *, real *, 
	    real *, real *, real *, real *, real *, real *, real *, real *, 
	    real *, real *, integer *);
    integer newcls, oldfst, indwrk, windex, oldlst;
    logical usedrq;
    integer newfst, newftt, parity, windmn, isupmn, newlst, windpl, zusedl, 
	    newsiz, zusedu, zusedw;
    real bstres, nrminv;
    logical tryrqc;
    integer isupmx;
    real rqcorr;
    extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *, 
	    real *, real *, integer *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLARRV computes the eigenvectors of the tridiagonal matrix */
/*  T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T. */
/*  The input eigenvalues should have been computed by SLARRE. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix.  N >= 0. */

/*  VL      (input) REAL */
/*  VU      (input) REAL */
/*          Lower and upper bounds of the interval that contains the desired */
/*          eigenvalues. VL < VU. Needed to compute gaps on the left or right */
/*          end of the extremal eigenvalues in the desired RANGE. */

/*  D       (input/output) REAL             array, dimension (N) */
/*          On entry, the N diagonal elements of the diagonal matrix D. */
/*          On exit, D may be overwritten. */

/*  L       (input/output) REAL             array, dimension (N) */
/*          On entry, the (N-1) subdiagonal elements of the unit */
/*          bidiagonal matrix L are in elements 1 to N-1 of L */
/*          (if the matrix is not splitted.) At the end of each block */
/*          is stored the corresponding shift as given by SLARRE. */
/*          On exit, L is overwritten. */

/*  PIVMIN  (in) DOUBLE PRECISION */
/*          The minimum pivot allowed in the Sturm sequence. */

/*  ISPLIT  (input) INTEGER array, dimension (N) */
/*          The splitting points, at which T breaks up into blocks. */
/*          The first block consists of rows/columns 1 to */
/*          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
/*          through ISPLIT( 2 ), etc. */

/*  M       (input) INTEGER */
/*          The total number of input eigenvalues.  0 <= M <= N. */

/*  DOL     (input) INTEGER */
/*  DOU     (input) INTEGER */
/*          If the user wants to compute only selected eigenvectors from all */
/*          the eigenvalues supplied, he can specify an index range DOL:DOU. */
/*          Or else the setting DOL=1, DOU=M should be applied. */
/*          Note that DOL and DOU refer to the order in which the eigenvalues */
/*          are stored in W. */
/*          If the user wants to compute only selected eigenpairs, then */
/*          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the */
/*          computed eigenvectors. All other columns of Z are set to zero. */

/*  MINRGP  (input) REAL */

/*  RTOL1   (input) REAL */
/*  RTOL2   (input) REAL */
/*           Parameters for bisection. */
/*           An interval [LEFT,RIGHT] has converged if */
/*           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */

/*  W       (input/output) REAL             array, dimension (N) */
/*          The first M elements of W contain the APPROXIMATE eigenvalues for */
/*          which eigenvectors are to be computed.  The eigenvalues */
/*          should be grouped by split-off block and ordered from */
/*          smallest to largest within the block ( The output array */
/*          W from SLARRE is expected here ). Furthermore, they are with */
/*          respect to the shift of the corresponding root representation */
/*          for their block. On exit, W holds the eigenvalues of the */
/*          UNshifted matrix. */

/*  WERR    (input/output) REAL             array, dimension (N) */
/*          The first M elements contain the semiwidth of the uncertainty */
/*          interval of the corresponding eigenvalue in W */

/*  WGAP    (input/output) REAL             array, dimension (N) */
/*          The separation from the right neighbor eigenvalue in W. */

/*  IBLOCK  (input) INTEGER array, dimension (N) */
/*          The indices of the blocks (submatrices) associated with the */
/*          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue */
/*          W(i) belongs to the first block from the top, =2 if W(i) */
/*          belongs to the second block, etc. */

/*  INDEXW  (input) INTEGER array, dimension (N) */
/*          The indices of the eigenvalues within each block (submatrix); */
/*          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the */
/*          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block. */

/*  GERS    (input) REAL             array, dimension (2*N) */
/*          The N Gerschgorin intervals (the i-th Gerschgorin interval */
/*          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should */
/*          be computed from the original UNshifted matrix. */

/*  Z       (output) REAL             array, dimension (LDZ, max(1,M) ) */
/*          If INFO = 0, the first M columns of Z contain the */
/*          orthonormal eigenvectors of the matrix T */
/*          corresponding to the input eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) ) */
/*          The support of the eigenvectors in Z, i.e., the indices */
/*          indicating the nonzero elements in Z. The I-th eigenvector */
/*          is nonzero only in elements ISUPPZ( 2*I-1 ) through */
/*          ISUPPZ( 2*I ). */

/*  WORK    (workspace) REAL             array, dimension (12*N) */

/*  IWORK   (workspace) INTEGER array, dimension (7*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */

/*          > 0:  A problem occured in SLARRV. */
/*          < 0:  One of the called subroutines signaled an internal problem. */
/*                Needs inspection of the corresponding parameter IINFO */
/*                for further information. */

/*          =-1:  Problem in SLARRB when refining a child's eigenvalues. */
/*          =-2:  Problem in SLARRF when computing the RRR of a child. */
/*                When a child is inside a tight cluster, it can be difficult */
/*                to find an RRR. A partial remedy from the user's point of */
/*                view is to make the parameter MINRGP smaller and recompile. */
/*                However, as the orthogonality of the computed vectors is */
/*                proportional to 1/MINRGP, the user should be aware that */
/*                he might be trading in precision when he decreases MINRGP. */
/*          =-3:  Problem in SLARRB when refining a single eigenvalue */
/*                after the Rayleigh correction was rejected. */
/*          = 5:  The Rayleigh Quotient Iteration failed to converge to */
/*                full accuracy in MAXITR steps. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Beresford Parlett, University of California, Berkeley, USA */
/*     Jim Demmel, University of California, Berkeley, USA */
/*     Inderjit Dhillon, University of Texas, Austin, USA */
/*     Osni Marques, LBNL/NERSC, USA */
/*     Christof Voemel, University of California, Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */
/*     .. */
/*     The first N entries of WORK are reserved for the eigenvalues */
    /* Parameter adjustments */
    --d__;
    --l;
    --isplit;
    --w;
    --werr;
    --wgap;
    --iblock;
    --indexw;
    --gers;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --isuppz;
    --work;
    --iwork;

    /* Function Body */
    indld = *n + 1;
    indlld = (*n << 1) + 1;
    indwrk = *n * 3 + 1;
    minwsize = *n * 12;
    i__1 = minwsize;
    for (i__ = 1; i__ <= i__1; ++i__) {
	work[i__] = 0.f;
/* L5: */
    }
/*     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the */
/*     factorization used to compute the FP vector */
    iindr = 0;
/*     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current */
/*     layer and the one above. */
    iindc1 = *n;
    iindc2 = *n << 1;
    iindwk = *n * 3 + 1;
    miniwsize = *n * 7;
    i__1 = miniwsize;
    for (i__ = 1; i__ <= i__1; ++i__) {
	iwork[i__] = 0;
/* L10: */
    }
    zusedl = 1;
    if (*dol > 1) {
/*        Set lower bound for use of Z */
	zusedl = *dol - 1;
    }
    zusedu = *m;
    if (*dou < *m) {
/*        Set lower bound for use of Z */
	zusedu = *dou + 1;
    }
/*     The width of the part of Z that is used */
    zusedw = zusedu - zusedl + 1;
    slaset_("Full", n, &zusedw, &c_b5, &c_b5, &z__[zusedl * z_dim1 + 1], ldz);
    eps = slamch_("Precision");
    rqtol = eps * 2.f;

/*     Set expert flags for standard code. */
    tryrqc = TRUE_;
    if (*dol == 1 && *dou == *m) {
    } else {
/*        Only selected eigenpairs are computed. Since the other evalues */
/*        are not refined by RQ iteration, bisection has to compute to full */
/*        accuracy. */
	*rtol1 = eps * 4.f;
	*rtol2 = eps * 4.f;
    }
/*     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the */
/*     desired eigenvalues. The support of the nonzero eigenvector */
/*     entries is contained in the interval IBEGIN:IEND. */
/*     Remark that if k eigenpairs are desired, then the eigenvectors */
/*     are stored in k contiguous columns of Z. */
/*     DONE is the number of eigenvectors already computed */
    done = 0;
    ibegin = 1;
    wbegin = 1;
    i__1 = iblock[*m];
    for (jblk = 1; jblk <= i__1; ++jblk) {
	iend = isplit[jblk];
	sigma = l[iend];
/*        Find the eigenvectors of the submatrix indexed IBEGIN */
/*        through IEND. */
	wend = wbegin - 1;
L15:
	if (wend < *m) {
	    if (iblock[wend + 1] == jblk) {
		++wend;
		goto L15;
	    }
	}
	if (wend < wbegin) {
	    ibegin = iend + 1;
	    goto L170;
	} else if (wend < *dol || wbegin > *dou) {
	    ibegin = iend + 1;
	    wbegin = wend + 1;
	    goto L170;
	}
/*        Find local spectral diameter of the block */
	gl = gers[(ibegin << 1) - 1];
	gu = gers[ibegin * 2];
	i__2 = iend;
	for (i__ = ibegin + 1; i__ <= i__2; ++i__) {
/* Computing MIN */
	    r__1 = gers[(i__ << 1) - 1];
	    gl = dmin(r__1,gl);
/* Computing MAX */
	    r__1 = gers[i__ * 2];
	    gu = dmax(r__1,gu);
/* L20: */
	}
	spdiam = gu - gl;
/*        OLDIEN is the last index of the previous block */
	oldien = ibegin - 1;
/*        Calculate the size of the current block */
	in = iend - ibegin + 1;
/*        The number of eigenvalues in the current block */
	im = wend - wbegin + 1;
/*        This is for a 1x1 block */
	if (ibegin == iend) {
	    ++done;
	    z__[ibegin + wbegin * z_dim1] = 1.f;
	    isuppz[(wbegin << 1) - 1] = ibegin;
	    isuppz[wbegin * 2] = ibegin;
	    w[wbegin] += sigma;
	    work[wbegin] = w[wbegin];
	    ibegin = iend + 1;
	    ++wbegin;
	    goto L170;
	}
/*        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND) */
/*        Note that these can be approximations, in this case, the corresp. */
/*        entries of WERR give the size of the uncertainty interval. */
/*        The eigenvalue approximations will be refined when necessary as */
/*        high relative accuracy is required for the computation of the */
/*        corresponding eigenvectors. */
	scopy_(&im, &w[wbegin], &c__1, &work[wbegin], &c__1);
/*        We store in W the eigenvalue approximations w.r.t. the original */
/*        matrix T. */
	i__2 = im;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    w[wbegin + i__ - 1] += sigma;
/* L30: */
	}
/*        NDEPTH is the current depth of the representation tree */
	ndepth = 0;
/*        PARITY is either 1 or 0 */
	parity = 1;
/*        NCLUS is the number of clusters for the next level of the */
/*        representation tree, we start with NCLUS = 1 for the root */
	nclus = 1;
	iwork[iindc1 + 1] = 1;
	iwork[iindc1 + 2] = im;
/*        IDONE is the number of eigenvectors already computed in the current */
/*        block */
	idone = 0;
/*        loop while( IDONE.LT.IM ) */
/*        generate the representation tree for the current block and */
/*        compute the eigenvectors */
L40:
	if (idone < im) {
/*           This is a crude protection against infinitely deep trees */
	    if (ndepth > *m) {
		*info = -2;
		return 0;
	    }
/*           breadth first processing of the current level of the representation */
/*           tree: OLDNCL = number of clusters on current level */
	    oldncl = nclus;
/*           reset NCLUS to count the number of child clusters */
	    nclus = 0;

	    parity = 1 - parity;
	    if (parity == 0) {
		oldcls = iindc1;
		newcls = iindc2;
	    } else {
		oldcls = iindc2;
		newcls = iindc1;
	    }
/*           Process the clusters on the current level */
	    i__2 = oldncl;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		j = oldcls + (i__ << 1);
/*              OLDFST, OLDLST = first, last index of current cluster. */
/*                               cluster indices start with 1 and are relative */
/*                               to WBEGIN when accessing W, WGAP, WERR, Z */
		oldfst = iwork[j - 1];
		oldlst = iwork[j];
		if (ndepth > 0) {
/*                 Retrieve relatively robust representation (RRR) of cluster */
/*                 that has been computed at the previous level */
/*                 The RRR is stored in Z and overwritten once the eigenvectors */
/*                 have been computed or when the cluster is refined */
		    if (*dol == 1 && *dou == *m) {
/*                    Get representation from location of the leftmost evalue */
/*                    of the cluster */
			j = wbegin + oldfst - 1;
		    } else {
			if (wbegin + oldfst - 1 < *dol) {
/*                       Get representation from the left end of Z array */
			    j = *dol - 1;
			} else if (wbegin + oldfst - 1 > *dou) {
/*                       Get representation from the right end of Z array */
			    j = *dou;
			} else {
			    j = wbegin + oldfst - 1;
			}
		    }
		    scopy_(&in, &z__[ibegin + j * z_dim1], &c__1, &d__[ibegin]
, &c__1);
		    i__3 = in - 1;
		    scopy_(&i__3, &z__[ibegin + (j + 1) * z_dim1], &c__1, &l[
			    ibegin], &c__1);
		    sigma = z__[iend + (j + 1) * z_dim1];
/*                 Set the corresponding entries in Z to zero */
		    slaset_("Full", &in, &c__2, &c_b5, &c_b5, &z__[ibegin + j 
			    * z_dim1], ldz);
		}
/*              Compute DL and DLL of current RRR */
		i__3 = iend - 1;
		for (j = ibegin; j <= i__3; ++j) {
		    tmp = d__[j] * l[j];
		    work[indld - 1 + j] = tmp;
		    work[indlld - 1 + j] = tmp * l[j];
/* L50: */
		}
		if (ndepth > 0) {
/*                 P and Q are index of the first and last eigenvalue to compute */
/*                 within the current block */
		    p = indexw[wbegin - 1 + oldfst];
		    q = indexw[wbegin - 1 + oldlst];
/*                 Offset for the arrays WORK, WGAP and WERR, i.e., th P-OFFSET */
/*                 thru' Q-OFFSET elements of these arrays are to be used. */
/*                  OFFSET = P-OLDFST */
		    offset = indexw[wbegin] - 1;
/*                 perform limited bisection (if necessary) to get approximate */
/*                 eigenvalues to the precision needed. */
		    slarrb_(&in, &d__[ibegin], &work[indlld + ibegin - 1], &p, 
			     &q, rtol1, rtol2, &offset, &work[wbegin], &wgap[
			    wbegin], &werr[wbegin], &work[indwrk], &iwork[
			    iindwk], pivmin, &spdiam, &in, &iinfo);
		    if (iinfo != 0) {
			*info = -1;
			return 0;
		    }
/*                 We also recompute the extremal gaps. W holds all eigenvalues */
/*                 of the unshifted matrix and must be used for computation */
/*                 of WGAP, the entries of WORK might stem from RRRs with */
/*                 different shifts. The gaps from WBEGIN-1+OLDFST to */
/*                 WBEGIN-1+OLDLST are correctly computed in SLARRB. */
/*                 However, we only allow the gaps to become greater since */
/*                 this is what should happen when we decrease WERR */
		    if (oldfst > 1) {
/* Computing MAX */
			r__1 = wgap[wbegin + oldfst - 2], r__2 = w[wbegin + 
				oldfst - 1] - werr[wbegin + oldfst - 1] - w[
				wbegin + oldfst - 2] - werr[wbegin + oldfst - 
				2];
			wgap[wbegin + oldfst - 2] = dmax(r__1,r__2);
		    }
		    if (wbegin + oldlst - 1 < wend) {
/* Computing MAX */
			r__1 = wgap[wbegin + oldlst - 1], r__2 = w[wbegin + 
				oldlst] - werr[wbegin + oldlst] - w[wbegin + 
				oldlst - 1] - werr[wbegin + oldlst - 1];
			wgap[wbegin + oldlst - 1] = dmax(r__1,r__2);
		    }
/*                 Each time the eigenvalues in WORK get refined, we store */
/*                 the newly found approximation with all shifts applied in W */
		    i__3 = oldlst;
		    for (j = oldfst; j <= i__3; ++j) {
			w[wbegin + j - 1] = work[wbegin + j - 1] + sigma;
/* L53: */
		    }
		}
/*              Process the current node. */
		newfst = oldfst;
		i__3 = oldlst;
		for (j = oldfst; j <= i__3; ++j) {
		    if (j == oldlst) {
/*                    we are at the right end of the cluster, this is also the */
/*                    boundary of the child cluster */
			newlst = j;
		    } else if (wgap[wbegin + j - 1] >= *minrgp * (r__1 = work[
			    wbegin + j - 1], dabs(r__1))) {
/*                    the right relative gap is big enough, the child cluster */
/*                    (NEWFST,..,NEWLST) is well separated from the following */
			newlst = j;
		    } else {
/*                    inside a child cluster, the relative gap is not */
/*                    big enough. */
			goto L140;
		    }
/*                 Compute size of child cluster found */
		    newsiz = newlst - newfst + 1;
/*                 NEWFTT is the place in Z where the new RRR or the computed */
/*                 eigenvector is to be stored */
		    if (*dol == 1 && *dou == *m) {
/*                    Store representation at location of the leftmost evalue */
/*                    of the cluster */
			newftt = wbegin + newfst - 1;
		    } else {
			if (wbegin + newfst - 1 < *dol) {
/*                       Store representation at the left end of Z array */
			    newftt = *dol - 1;
			} else if (wbegin + newfst - 1 > *dou) {
/*                       Store representation at the right end of Z array */
			    newftt = *dou;
			} else {
			    newftt = wbegin + newfst - 1;
			}
		    }
		    if (newsiz > 1) {

/*                    Current child is not a singleton but a cluster. */
/*                    Compute and store new representation of child. */


/*                    Compute left and right cluster gap. */

/*                    LGAP and RGAP are not computed from WORK because */
/*                    the eigenvalue approximations may stem from RRRs */
/*                    different shifts. However, W hold all eigenvalues */
/*                    of the unshifted matrix. Still, the entries in WGAP */
/*                    have to be computed from WORK since the entries */
/*                    in W might be of the same order so that gaps are not */
/*                    exhibited correctly for very close eigenvalues. */
			if (newfst == 1) {
/* Computing MAX */
			    r__1 = 0.f, r__2 = w[wbegin] - werr[wbegin] - *vl;
			    lgap = dmax(r__1,r__2);
			} else {
			    lgap = wgap[wbegin + newfst - 2];
			}
			rgap = wgap[wbegin + newlst - 1];

/*                    Compute left- and rightmost eigenvalue of child */
/*                    to high precision in order to shift as close */
/*                    as possible and obtain as large relative gaps */
/*                    as possible */

			for (k = 1; k <= 2; ++k) {
			    if (k == 1) {
				p = indexw[wbegin - 1 + newfst];
			    } else {
				p = indexw[wbegin - 1 + newlst];
			    }
			    offset = indexw[wbegin] - 1;
			    slarrb_(&in, &d__[ibegin], &work[indlld + ibegin 
				    - 1], &p, &p, &rqtol, &rqtol, &offset, &
				    work[wbegin], &wgap[wbegin], &werr[wbegin]
, &work[indwrk], &iwork[iindwk], pivmin, &
				    spdiam, &in, &iinfo);
/* L55: */
			}

			if (wbegin + newlst - 1 < *dol || wbegin + newfst - 1 
				> *dou) {
/*                       if the cluster contains no desired eigenvalues */
/*                       skip the computation of that branch of the rep. tree */

/*                       We could skip before the refinement of the extremal */
/*                       eigenvalues of the child, but then the representation */
/*                       tree could be different from the one when nothing is */
/*                       skipped. For this reason we skip at this place. */
			    idone = idone + newlst - newfst + 1;
			    goto L139;
			}

/*                    Compute RRR of child cluster. */
/*                    Note that the new RRR is stored in Z */

/*                    SLARRF needs LWORK = 2*N */
			slarrf_(&in, &d__[ibegin], &l[ibegin], &work[indld + 
				ibegin - 1], &newfst, &newlst, &work[wbegin], 
				&wgap[wbegin], &werr[wbegin], &spdiam, &lgap, 
				&rgap, pivmin, &tau, &z__[ibegin + newftt * 
				z_dim1], &z__[ibegin + (newftt + 1) * z_dim1], 
				 &work[indwrk], &iinfo);
			if (iinfo == 0) {
/*                       a new RRR for the cluster was found by SLARRF */
/*                       update shift and store it */
			    ssigma = sigma + tau;
			    z__[iend + (newftt + 1) * z_dim1] = ssigma;
/*                       WORK() are the midpoints and WERR() the semi-width */
/*                       Note that the entries in W are unchanged. */
			    i__4 = newlst;
			    for (k = newfst; k <= i__4; ++k) {
				fudge = eps * 3.f * (r__1 = work[wbegin + k - 
					1], dabs(r__1));
				work[wbegin + k - 1] -= tau;
				fudge += eps * 4.f * (r__1 = work[wbegin + k 
					- 1], dabs(r__1));
/*                          Fudge errors */
				werr[wbegin + k - 1] += fudge;
/*                          Gaps are not fudged. Provided that WERR is small */
/*                          when eigenvalues are close, a zero gap indicates */
/*                          that a new representation is needed for resolving */
/*                          the cluster. A fudge could lead to a wrong decision */
/*                          of judging eigenvalues 'separated' which in */
/*                          reality are not. This could have a negative impact */
/*                          on the orthogonality of the computed eigenvectors. */
/* L116: */
			    }
			    ++nclus;
			    k = newcls + (nclus << 1);
			    iwork[k - 1] = newfst;
			    iwork[k] = newlst;
			} else {
			    *info = -2;
			    return 0;
			}
		    } else {

/*                    Compute eigenvector of singleton */

			iter = 0;

			tol = log((real) in) * 4.f * eps;

			k = newfst;
			windex = wbegin + k - 1;
/* Computing MAX */
			i__4 = windex - 1;
			windmn = max(i__4,1);
/* Computing MIN */
			i__4 = windex + 1;
			windpl = min(i__4,*m);
			lambda = work[windex];
			++done;
/*                    Check if eigenvector computation is to be skipped */
			if (windex < *dol || windex > *dou) {
			    eskip = TRUE_;
			    goto L125;
			} else {
			    eskip = FALSE_;
			}
			left = work[windex] - werr[windex];
			right = work[windex] + werr[windex];
			indeig = indexw[windex];
/*                    Note that since we compute the eigenpairs for a child, */
/*                    all eigenvalue approximations are w.r.t the same shift. */
/*                    In this case, the entries in WORK should be used for */
/*                    computing the gaps since they exhibit even very small */
/*                    differences in the eigenvalues, as opposed to the */
/*                    entries in W which might "look" the same. */
			if (k == 1) {
/*                       In the case RANGE='I' and with not much initial */
/*                       accuracy in LAMBDA and VL, the formula */
/*                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA ) */
/*                       can lead to an overestimation of the left gap and */
/*                       thus to inadequately early RQI 'convergence'. */
/*                       Prevent this by forcing a small left gap. */
/* Computing MAX */
			    r__1 = dabs(left), r__2 = dabs(right);
			    lgap = eps * dmax(r__1,r__2);
			} else {
			    lgap = wgap[windmn];
			}
			if (k == im) {
/*                       In the case RANGE='I' and with not much initial */
/*                       accuracy in LAMBDA and VU, the formula */
/*                       can lead to an overestimation of the right gap and */
/*                       thus to inadequately early RQI 'convergence'. */
/*                       Prevent this by forcing a small right gap. */
/* Computing MAX */
			    r__1 = dabs(left), r__2 = dabs(right);
			    rgap = eps * dmax(r__1,r__2);
			} else {
			    rgap = wgap[windex];
			}
			gap = dmin(lgap,rgap);
			if (k == 1 || k == im) {
/*                       The eigenvector support can become wrong */
/*                       because significant entries could be cut off due to a */
/*                       large GAPTOL parameter in LAR1V. Prevent this. */
			    gaptol = 0.f;
			} else {
			    gaptol = gap * eps;
			}
			isupmn = in;
			isupmx = 1;
/*                    Update WGAP so that it holds the minimum gap */
/*                    to the left or the right. This is crucial in the */
/*                    case where bisection is used to ensure that the */
/*                    eigenvalue is refined up to the required precision. */
/*                    The correct value is restored afterwards. */
			savgap = wgap[windex];
			wgap[windex] = gap;
/*                    We want to use the Rayleigh Quotient Correction */
/*                    as often as possible since it converges quadratically */
/*                    when we are close enough to the desired eigenvalue. */
/*                    However, the Rayleigh Quotient can have the wrong sign */
/*                    and lead us away from the desired eigenvalue. In this */
/*                    case, the best we can do is to use bisection. */
			usedbs = FALSE_;
			usedrq = FALSE_;
/*                    Bisection is initially turned off unless it is forced */
			needbs = ! tryrqc;
L120:
/*                    Check if bisection should be used to refine eigenvalue */
			if (needbs) {
/*                       Take the bisection as new iterate */
			    usedbs = TRUE_;
			    itmp1 = iwork[iindr + windex];
			    offset = indexw[wbegin] - 1;
			    r__1 = eps * 2.f;
			    slarrb_(&in, &d__[ibegin], &work[indlld + ibegin 
				    - 1], &indeig, &indeig, &c_b5, &r__1, &
				    offset, &work[wbegin], &wgap[wbegin], &
				    werr[wbegin], &work[indwrk], &iwork[
				    iindwk], pivmin, &spdiam, &itmp1, &iinfo);
			    if (iinfo != 0) {
				*info = -3;
				return 0;
			    }
			    lambda = work[windex];
/*                       Reset twist index from inaccurate LAMBDA to */
/*                       force computation of true MINGMA */
			    iwork[iindr + windex] = 0;
			}
/*                    Given LAMBDA, compute the eigenvector. */
			L__1 = ! usedbs;
			slar1v_(&in, &c__1, &in, &lambda, &d__[ibegin], &l[
				ibegin], &work[indld + ibegin - 1], &work[
				indlld + ibegin - 1], pivmin, &gaptol, &z__[
				ibegin + windex * z_dim1], &L__1, &negcnt, &
				ztz, &mingma, &iwork[iindr + windex], &isuppz[
				(windex << 1) - 1], &nrminv, &resid, &rqcorr, 
				&work[indwrk]);
			if (iter == 0) {
			    bstres = resid;
			    bstw = lambda;
			} else if (resid < bstres) {
			    bstres = resid;
			    bstw = lambda;
			}
/* Computing MIN */
			i__4 = isupmn, i__5 = isuppz[(windex << 1) - 1];
			isupmn = min(i__4,i__5);
/* Computing MAX */
			i__4 = isupmx, i__5 = isuppz[windex * 2];
			isupmx = max(i__4,i__5);
			++iter;
/*                    sin alpha <= |resid|/gap */
/*                    Note that both the residual and the gap are */
/*                    proportional to the matrix, so ||T|| doesn't play */
/*                    a role in the quotient */

/*                    Convergence test for Rayleigh-Quotient iteration */
/*                    (omitted when Bisection has been used) */

			if (resid > tol * gap && dabs(rqcorr) > rqtol * dabs(
				lambda) && ! usedbs) {
/*                       We need to check that the RQCORR update doesn't */
/*                       move the eigenvalue away from the desired one and */
/*                       towards a neighbor. -> protection with bisection */
			    if (indeig <= negcnt) {
/*                          The wanted eigenvalue lies to the left */
				sgndef = -1.f;
			    } else {
/*                          The wanted eigenvalue lies to the right */
				sgndef = 1.f;
			    }
/*                       We only use the RQCORR if it improves the */
/*                       the iterate reasonably. */
			    if (rqcorr * sgndef >= 0.f && lambda + rqcorr <= 
				    right && lambda + rqcorr >= left) {
				usedrq = TRUE_;
/*                          Store new midpoint of bisection interval in WORK */
				if (sgndef == 1.f) {
/*                             The current LAMBDA is on the left of the true */
/*                             eigenvalue */
				    left = lambda;
/*                             We prefer to assume that the error estimate */
/*                             is correct. We could make the interval not */
/*                             as a bracket but to be modified if the RQCORR */
/*                             chooses to. In this case, the RIGHT side should */
/*                             be modified as follows: */
/*                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR) */
				} else {
/*                             The current LAMBDA is on the right of the true */
/*                             eigenvalue */
				    right = lambda;
/*                             See comment about assuming the error estimate is */
/*                             correct above. */
/*                              LEFT = MIN(LEFT, LAMBDA + RQCORR) */
				}
				work[windex] = (right + left) * .5f;
/*                          Take RQCORR since it has the correct sign and */
/*                          improves the iterate reasonably */
				lambda += rqcorr;
/*                          Update width of error interval */
				werr[windex] = (right - left) * .5f;
			    } else {
				needbs = TRUE_;
			    }
			    if (right - left < rqtol * dabs(lambda)) {
/*                             The eigenvalue is computed to bisection accuracy */
/*                             compute eigenvector and stop */
				usedbs = TRUE_;
				goto L120;
			    } else if (iter < 10) {
				goto L120;
			    } else if (iter == 10) {
				needbs = TRUE_;
				goto L120;
			    } else {
				*info = 5;
				return 0;
			    }
			} else {
			    stp2ii = FALSE_;
			    if (usedrq && usedbs && bstres <= resid) {
				lambda = bstw;
				stp2ii = TRUE_;
			    }
			    if (stp2ii) {
/*                          improve error angle by second step */
				L__1 = ! usedbs;
				slar1v_(&in, &c__1, &in, &lambda, &d__[ibegin]
, &l[ibegin], &work[indld + ibegin - 
					1], &work[indlld + ibegin - 1], 
					pivmin, &gaptol, &z__[ibegin + windex 
					* z_dim1], &L__1, &negcnt, &ztz, &
					mingma, &iwork[iindr + windex], &
					isuppz[(windex << 1) - 1], &nrminv, &
					resid, &rqcorr, &work[indwrk]);
			    }
			    work[windex] = lambda;
			}

/*                    Compute FP-vector support w.r.t. whole matrix */

			isuppz[(windex << 1) - 1] += oldien;
			isuppz[windex * 2] += oldien;
			zfrom = isuppz[(windex << 1) - 1];
			zto = isuppz[windex * 2];
			isupmn += oldien;
			isupmx += oldien;
/*                    Ensure vector is ok if support in the RQI has changed */
			if (isupmn < zfrom) {
			    i__4 = zfrom - 1;
			    for (ii = isupmn; ii <= i__4; ++ii) {
				z__[ii + windex * z_dim1] = 0.f;
/* L122: */
			    }
			}
			if (isupmx > zto) {
			    i__4 = isupmx;
			    for (ii = zto + 1; ii <= i__4; ++ii) {
				z__[ii + windex * z_dim1] = 0.f;
/* L123: */
			    }
			}
			i__4 = zto - zfrom + 1;
			sscal_(&i__4, &nrminv, &z__[zfrom + windex * z_dim1], 
				&c__1);
L125:
/*                    Update W */
			w[windex] = lambda + sigma;
/*                    Recompute the gaps on the left and right */
/*                    But only allow them to become larger and not */
/*                    smaller (which can only happen through "bad" */
/*                    cancellation and doesn't reflect the theory */
/*                    where the initial gaps are underestimated due */
/*                    to WERR being too crude.) */
			if (! eskip) {
			    if (k > 1) {
/* Computing MAX */
				r__1 = wgap[windmn], r__2 = w[windex] - werr[
					windex] - w[windmn] - werr[windmn];
				wgap[windmn] = dmax(r__1,r__2);
			    }
			    if (windex < wend) {
/* Computing MAX */
				r__1 = savgap, r__2 = w[windpl] - werr[windpl]
					 - w[windex] - werr[windex];
				wgap[windex] = dmax(r__1,r__2);
			    }
			}
			++idone;
		    }
/*                 here ends the code for the current child */

L139:
/*                 Proceed to any remaining child nodes */
		    newfst = j + 1;
L140:
		    ;
		}
/* L150: */
	    }
	    ++ndepth;
	    goto L40;
	}
	ibegin = iend + 1;
	wbegin = wend + 1;
L170:
	;
    }

    return 0;

/*     End of SLARRV */

} /* slarrv_ */