aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slahrd.c
blob: d73e4ee5b9a755236487cfa3f92d02a110f650bb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/* slahrd.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static real c_b4 = -1.f;
static real c_b5 = 1.f;
static integer c__1 = 1;
static real c_b38 = 0.f;

/* Subroutine */ int slahrd_(integer *n, integer *k, integer *nb, real *a, 
	integer *lda, real *tau, real *t, integer *ldt, real *y, integer *ldy)
{
    /* System generated locals */
    integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2, 
	    i__3;
    real r__1;

    /* Local variables */
    integer i__;
    real ei;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), 
	    sgemv_(char *, integer *, integer *, real *, real *, integer *, 
	    real *, integer *, real *, real *, integer *), scopy_(
	    integer *, real *, integer *, real *, integer *), saxpy_(integer *
, real *, real *, integer *, real *, integer *), strmv_(char *, 
	    char *, char *, integer *, real *, integer *, real *, integer *), slarfg_(integer *, real *, real *, 
	    integer *, real *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLAHRD reduces the first NB columns of a real general n-by-(n-k+1) */
/*  matrix A so that elements below the k-th subdiagonal are zero. The */
/*  reduction is performed by an orthogonal similarity transformation */
/*  Q' * A * Q. The routine returns the matrices V and T which determine */
/*  Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T. */

/*  This is an OBSOLETE auxiliary routine. */
/*  This routine will be 'deprecated' in a  future release. */
/*  Please use the new routine SLAHR2 instead. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix A. */

/*  K       (input) INTEGER */
/*          The offset for the reduction. Elements below the k-th */
/*          subdiagonal in the first NB columns are reduced to zero. */

/*  NB      (input) INTEGER */
/*          The number of columns to be reduced. */

/*  A       (input/output) REAL array, dimension (LDA,N-K+1) */
/*          On entry, the n-by-(n-k+1) general matrix A. */
/*          On exit, the elements on and above the k-th subdiagonal in */
/*          the first NB columns are overwritten with the corresponding */
/*          elements of the reduced matrix; the elements below the k-th */
/*          subdiagonal, with the array TAU, represent the matrix Q as a */
/*          product of elementary reflectors. The other columns of A are */
/*          unchanged. See Further Details. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  TAU     (output) REAL array, dimension (NB) */
/*          The scalar factors of the elementary reflectors. See Further */
/*          Details. */

/*  T       (output) REAL array, dimension (LDT,NB) */
/*          The upper triangular matrix T. */

/*  LDT     (input) INTEGER */
/*          The leading dimension of the array T.  LDT >= NB. */

/*  Y       (output) REAL array, dimension (LDY,NB) */
/*          The n-by-nb matrix Y. */

/*  LDY     (input) INTEGER */
/*          The leading dimension of the array Y. LDY >= N. */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of nb elementary reflectors */

/*     Q = H(1) H(2) . . . H(nb). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
/*  A(i+k+1:n,i), and tau in TAU(i). */

/*  The elements of the vectors v together form the (n-k+1)-by-nb matrix */
/*  V which is needed, with T and Y, to apply the transformation to the */
/*  unreduced part of the matrix, using an update of the form: */
/*  A := (I - V*T*V') * (A - Y*V'). */

/*  The contents of A on exit are illustrated by the following example */
/*  with n = 7, k = 3 and nb = 2: */

/*     ( a   h   a   a   a ) */
/*     ( a   h   a   a   a ) */
/*     ( a   h   a   a   a ) */
/*     ( h   h   a   a   a ) */
/*     ( v1  h   a   a   a ) */
/*     ( v1  v2  a   a   a ) */
/*     ( v1  v2  a   a   a ) */

/*  where a denotes an element of the original matrix A, h denotes a */
/*  modified element of the upper Hessenberg matrix H, and vi denotes an */
/*  element of the vector defining H(i). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick return if possible */

    /* Parameter adjustments */
    --tau;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    y_dim1 = *ldy;
    y_offset = 1 + y_dim1;
    y -= y_offset;

    /* Function Body */
    if (*n <= 1) {
	return 0;
    }

    i__1 = *nb;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (i__ > 1) {

/*           Update A(1:n,i) */

/*           Compute i-th column of A - Y * V' */

	    i__2 = i__ - 1;
	    sgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &a[*k 
		    + i__ - 1 + a_dim1], lda, &c_b5, &a[i__ * a_dim1 + 1], &
		    c__1);

/*           Apply I - V * T' * V' to this column (call it b) from the */
/*           left, using the last column of T as workspace */

/*           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows) */
/*                    ( V2 )             ( b2 ) */

/*           where V1 is unit lower triangular */

/*           w := V1' * b1 */

	    i__2 = i__ - 1;
	    scopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 + 
		    1], &c__1);
	    i__2 = i__ - 1;
	    strmv_("Lower", "Transpose", "Unit", &i__2, &a[*k + 1 + a_dim1], 
		    lda, &t[*nb * t_dim1 + 1], &c__1);

/*           w := w + V2'*b2 */

	    i__2 = *n - *k - i__ + 1;
	    i__3 = i__ - 1;
	    sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], 
		    lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b5, &t[*nb * 
		    t_dim1 + 1], &c__1);

/*           w := T'*w */

	    i__2 = i__ - 1;
	    strmv_("Upper", "Transpose", "Non-unit", &i__2, &t[t_offset], ldt, 
		     &t[*nb * t_dim1 + 1], &c__1);

/*           b2 := b2 - V2*w */

	    i__2 = *n - *k - i__ + 1;
	    i__3 = i__ - 1;
	    sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[*k + i__ + a_dim1], 
		     lda, &t[*nb * t_dim1 + 1], &c__1, &c_b5, &a[*k + i__ + 
		    i__ * a_dim1], &c__1);

/*           b1 := b1 - V1*w */

	    i__2 = i__ - 1;
	    strmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
, lda, &t[*nb * t_dim1 + 1], &c__1);
	    i__2 = i__ - 1;
	    saxpy_(&i__2, &c_b4, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__ 
		    * a_dim1], &c__1);

	    a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei;
	}

/*        Generate the elementary reflector H(i) to annihilate */
/*        A(k+i+1:n,i) */

	i__2 = *n - *k - i__ + 1;
/* Computing MIN */
	i__3 = *k + i__ + 1;
	slarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[min(i__3, *n)+ i__ * 
		a_dim1], &c__1, &tau[i__]);
	ei = a[*k + i__ + i__ * a_dim1];
	a[*k + i__ + i__ * a_dim1] = 1.f;

/*        Compute  Y(1:n,i) */

	i__2 = *n - *k - i__ + 1;
	sgemv_("No transpose", n, &i__2, &c_b5, &a[(i__ + 1) * a_dim1 + 1], 
		lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &y[i__ * 
		y_dim1 + 1], &c__1);
	i__2 = *n - *k - i__ + 1;
	i__3 = i__ - 1;
	sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], lda, &
		a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &t[i__ * t_dim1 + 
		1], &c__1);
	i__2 = i__ - 1;
	sgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &t[i__ * 
		t_dim1 + 1], &c__1, &c_b5, &y[i__ * y_dim1 + 1], &c__1);
	sscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);

/*        Compute T(1:i,i) */

	i__2 = i__ - 1;
	r__1 = -tau[i__];
	sscal_(&i__2, &r__1, &t[i__ * t_dim1 + 1], &c__1);
	i__2 = i__ - 1;
	strmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt, 
		&t[i__ * t_dim1 + 1], &c__1)
		;
	t[i__ + i__ * t_dim1] = tau[i__];

/* L10: */
    }
    a[*k + *nb + *nb * a_dim1] = ei;

    return 0;

/*     End of SLAHRD */

} /* slahrd_ */