aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slaed5.c
blob: 756fdd8d885f29775851d19e273dace3a8e05097 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/* slaed5.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int slaed5_(integer *i__, real *d__, real *z__, real *delta, 
	real *rho, real *dlam)
{
    /* System generated locals */
    real r__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    real b, c__, w, del, tau, temp;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  This subroutine computes the I-th eigenvalue of a symmetric rank-one */
/*  modification of a 2-by-2 diagonal matrix */

/*             diag( D )  +  RHO *  Z * transpose(Z) . */

/*  The diagonal elements in the array D are assumed to satisfy */

/*             D(i) < D(j)  for  i < j . */

/*  We also assume RHO > 0 and that the Euclidean norm of the vector */
/*  Z is one. */

/*  Arguments */
/*  ========= */

/*  I      (input) INTEGER */
/*         The index of the eigenvalue to be computed.  I = 1 or I = 2. */

/*  D      (input) REAL array, dimension (2) */
/*         The original eigenvalues.  We assume D(1) < D(2). */

/*  Z      (input) REAL array, dimension (2) */
/*         The components of the updating vector. */

/*  DELTA  (output) REAL array, dimension (2) */
/*         The vector DELTA contains the information necessary */
/*         to construct the eigenvectors. */

/*  RHO    (input) REAL */
/*         The scalar in the symmetric updating formula. */

/*  DLAM   (output) REAL */
/*         The computed lambda_I, the I-th updated eigenvalue. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Ren-Cang Li, Computer Science Division, University of California */
/*     at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --delta;
    --z__;
    --d__;

    /* Function Body */
    del = d__[2] - d__[1];
    if (*i__ == 1) {
	w = *rho * 2.f * (z__[2] * z__[2] - z__[1] * z__[1]) / del + 1.f;
	if (w > 0.f) {
	    b = del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
	    c__ = *rho * z__[1] * z__[1] * del;

/*           B > ZERO, always */

	    tau = c__ * 2.f / (b + sqrt((r__1 = b * b - c__ * 4.f, dabs(r__1))
		    ));
	    *dlam = d__[1] + tau;
	    delta[1] = -z__[1] / tau;
	    delta[2] = z__[2] / (del - tau);
	} else {
	    b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
	    c__ = *rho * z__[2] * z__[2] * del;
	    if (b > 0.f) {
		tau = c__ * -2.f / (b + sqrt(b * b + c__ * 4.f));
	    } else {
		tau = (b - sqrt(b * b + c__ * 4.f)) / 2.f;
	    }
	    *dlam = d__[2] + tau;
	    delta[1] = -z__[1] / (del + tau);
	    delta[2] = -z__[2] / tau;
	}
	temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]);
	delta[1] /= temp;
	delta[2] /= temp;
    } else {

/*     Now I=2 */

	b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
	c__ = *rho * z__[2] * z__[2] * del;
	if (b > 0.f) {
	    tau = (b + sqrt(b * b + c__ * 4.f)) / 2.f;
	} else {
	    tau = c__ * 2.f / (-b + sqrt(b * b + c__ * 4.f));
	}
	*dlam = d__[2] + tau;
	delta[1] = -z__[1] / (del + tau);
	delta[2] = -z__[2] / tau;
	temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]);
	delta[1] /= temp;
	delta[2] /= temp;
    }
    return 0;

/*     End OF SLAED5 */

} /* slaed5_ */