aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slaed1.c
blob: 3c95598fea3c25d50d08f3029efa068de3bba767 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/* slaed1.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;

/* Subroutine */ int slaed1_(integer *n, real *d__, real *q, integer *ldq, 
	integer *indxq, real *rho, integer *cutpnt, real *work, integer *
	iwork, integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, i__1, i__2;

    /* Local variables */
    integer i__, k, n1, n2, is, iw, iz, iq2, cpp1, indx, indxc, indxp;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), slaed2_(integer *, integer *, integer *, real *, real 
	    *, integer *, integer *, real *, real *, real *, real *, real *, 
	    integer *, integer *, integer *, integer *, integer *), slaed3_(
	    integer *, integer *, integer *, real *, real *, integer *, real *
, real *, real *, integer *, integer *, real *, real *, integer *)
	    ;
    integer idlmda;
    extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_(
	    integer *, integer *, real *, integer *, integer *, integer *);
    integer coltyp;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLAED1 computes the updated eigensystem of a diagonal */
/*  matrix after modification by a rank-one symmetric matrix.  This */
/*  routine is used only for the eigenproblem which requires all */
/*  eigenvalues and eigenvectors of a tridiagonal matrix.  SLAED7 handles */
/*  the case in which eigenvalues only or eigenvalues and eigenvectors */
/*  of a full symmetric matrix (which was reduced to tridiagonal form) */
/*  are desired. */

/*    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */

/*     where Z = Q'u, u is a vector of length N with ones in the */
/*     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */

/*     The eigenvectors of the original matrix are stored in Q, and the */
/*     eigenvalues are in D.  The algorithm consists of three stages: */

/*        The first stage consists of deflating the size of the problem */
/*        when there are multiple eigenvalues or if there is a zero in */
/*        the Z vector.  For each such occurence the dimension of the */
/*        secular equation problem is reduced by one.  This stage is */
/*        performed by the routine SLAED2. */

/*        The second stage consists of calculating the updated */
/*        eigenvalues. This is done by finding the roots of the secular */
/*        equation via the routine SLAED4 (as called by SLAED3). */
/*        This routine also calculates the eigenvectors of the current */
/*        problem. */

/*        The final stage consists of computing the updated eigenvectors */
/*        directly using the updated eigenvalues.  The eigenvectors for */
/*        the current problem are multiplied with the eigenvectors from */
/*        the overall problem. */

/*  Arguments */
/*  ========= */

/*  N      (input) INTEGER */
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  D      (input/output) REAL array, dimension (N) */
/*         On entry, the eigenvalues of the rank-1-perturbed matrix. */
/*         On exit, the eigenvalues of the repaired matrix. */

/*  Q      (input/output) REAL array, dimension (LDQ,N) */
/*         On entry, the eigenvectors of the rank-1-perturbed matrix. */
/*         On exit, the eigenvectors of the repaired tridiagonal matrix. */

/*  LDQ    (input) INTEGER */
/*         The leading dimension of the array Q.  LDQ >= max(1,N). */

/*  INDXQ  (input/output) INTEGER array, dimension (N) */
/*         On entry, the permutation which separately sorts the two */
/*         subproblems in D into ascending order. */
/*         On exit, the permutation which will reintegrate the */
/*         subproblems back into sorted order, */
/*         i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. */

/*  RHO    (input) REAL */
/*         The subdiagonal entry used to create the rank-1 modification. */

/*  CUTPNT (input) INTEGER */
/*         The location of the last eigenvalue in the leading sub-matrix. */
/*         min(1,N) <= CUTPNT <= N/2. */

/*  WORK   (workspace) REAL array, dimension (4*N + N**2) */

/*  IWORK  (workspace) INTEGER array, dimension (4*N) */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = 1, an eigenvalue did not converge */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */
/*  Modified by Francoise Tisseur, University of Tennessee. */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --indxq;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;

    if (*n < 0) {
	*info = -1;
    } else if (*ldq < max(1,*n)) {
	*info = -4;
    } else /* if(complicated condition) */ {
/* Computing MIN */
	i__1 = 1, i__2 = *n / 2;
	if (min(i__1,i__2) > *cutpnt || *n / 2 < *cutpnt) {
	    *info = -7;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SLAED1", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     The following values are integer pointers which indicate */
/*     the portion of the workspace */
/*     used by a particular array in SLAED2 and SLAED3. */

    iz = 1;
    idlmda = iz + *n;
    iw = idlmda + *n;
    iq2 = iw + *n;

    indx = 1;
    indxc = indx + *n;
    coltyp = indxc + *n;
    indxp = coltyp + *n;


/*     Form the z-vector which consists of the last row of Q_1 and the */
/*     first row of Q_2. */

    scopy_(cutpnt, &q[*cutpnt + q_dim1], ldq, &work[iz], &c__1);
    cpp1 = *cutpnt + 1;
    i__1 = *n - *cutpnt;
    scopy_(&i__1, &q[cpp1 + cpp1 * q_dim1], ldq, &work[iz + *cutpnt], &c__1);

/*     Deflate eigenvalues. */

    slaed2_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, &indxq[1], rho, &work[
	    iz], &work[idlmda], &work[iw], &work[iq2], &iwork[indx], &iwork[
	    indxc], &iwork[indxp], &iwork[coltyp], info);

    if (*info != 0) {
	goto L20;
    }

/*     Solve Secular Equation. */

    if (k != 0) {
	is = (iwork[coltyp] + iwork[coltyp + 1]) * *cutpnt + (iwork[coltyp + 
		1] + iwork[coltyp + 2]) * (*n - *cutpnt) + iq2;
	slaed3_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, rho, &work[idlmda], 
		 &work[iq2], &iwork[indxc], &iwork[coltyp], &work[iw], &work[
		is], info);
	if (*info != 0) {
	    goto L20;
	}

/*     Prepare the INDXQ sorting permutation. */

	n1 = k;
	n2 = *n - k;
	slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    indxq[i__] = i__;
/* L10: */
	}
    }

L20:
    return 0;

/*     End of SLAED1 */

} /* slaed1_ */