| 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
 | /* sladiv.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
		http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int sladiv_(real *a, real *b, real *c__, real *d__, real *p, 
	real *q)
{
    real e, f;
/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */
/*     .. Scalar Arguments .. */
/*     .. */
/*  Purpose */
/*  ======= */
/*  SLADIV performs complex division in  real arithmetic */
/*                        a + i*b */
/*             p + i*q = --------- */
/*                        c + i*d */
/*  The algorithm is due to Robert L. Smith and can be found */
/*  in D. Knuth, The art of Computer Programming, Vol.2, p.195 */
/*  Arguments */
/*  ========= */
/*  A       (input) REAL */
/*  B       (input) REAL */
/*  C       (input) REAL */
/*  D       (input) REAL */
/*          The scalars a, b, c, and d in the above expression. */
/*  P       (output) REAL */
/*  Q       (output) REAL */
/*          The scalars p and q in the above expression. */
/*  ===================================================================== */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */
    if (dabs(*d__) < dabs(*c__)) {
	e = *d__ / *c__;
	f = *c__ + *d__ * e;
	*p = (*a + *b * e) / f;
	*q = (*b - *a * e) / f;
    } else {
	e = *c__ / *d__;
	f = *d__ + *c__ * e;
	*p = (*b + *a * e) / f;
	*q = (-(*a) + *b * e) / f;
    }
    return 0;
/*     End of SLADIV */
} /* sladiv_ */
 |