1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
/* sla_gercond.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
doublereal sla_gercond__(char *trans, integer *n, real *a, integer *lda, real
*af, integer *ldaf, integer *ipiv, integer *cmode, real *c__, integer
*info, real *work, integer *iwork, ftnlen trans_len)
{
/* System generated locals */
integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2;
real ret_val, r__1;
/* Local variables */
integer i__, j;
real tmp;
integer kase;
extern logical lsame_(char *, char *);
integer isave[3];
extern /* Subroutine */ int slacn2_(integer *, real *, real *, integer *,
real *, integer *, integer *), xerbla_(char *, integer *);
real ainvnm;
extern /* Subroutine */ int sgetrs_(char *, integer *, integer *, real *,
integer *, integer *, real *, integer *, integer *);
logical notrans;
/* -- LAPACK routine (version 3.2.1) -- */
/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/* -- Jason Riedy of Univ. of California Berkeley. -- */
/* -- April 2009 -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley and NAG Ltd. -- */
/* .. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SLA_GERCOND estimates the Skeel condition number of op(A) * op2(C) */
/* where op2 is determined by CMODE as follows */
/* CMODE = 1 op2(C) = C */
/* CMODE = 0 op2(C) = I */
/* CMODE = -1 op2(C) = inv(C) */
/* The Skeel condition number cond(A) = norminf( |inv(A)||A| ) */
/* is computed by computing scaling factors R such that */
/* diag(R)*A*op2(C) is row equilibrated and computing the standard */
/* infinity-norm condition number. */
/* Arguments */
/* ========== */
/* TRANS (input) CHARACTER*1 */
/* Specifies the form of the system of equations: */
/* = 'N': A * X = B (No transpose) */
/* = 'T': A**T * X = B (Transpose) */
/* = 'C': A**H * X = B (Conjugate Transpose = Transpose) */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* A (input) REAL array, dimension (LDA,N) */
/* On entry, the N-by-N matrix A. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* AF (input) REAL array, dimension (LDAF,N) */
/* The factors L and U from the factorization */
/* A = P*L*U as computed by SGETRF. */
/* LDAF (input) INTEGER */
/* The leading dimension of the array AF. LDAF >= max(1,N). */
/* IPIV (input) INTEGER array, dimension (N) */
/* The pivot indices from the factorization A = P*L*U */
/* as computed by SGETRF; row i of the matrix was interchanged */
/* with row IPIV(i). */
/* CMODE (input) INTEGER */
/* Determines op2(C) in the formula op(A) * op2(C) as follows: */
/* CMODE = 1 op2(C) = C */
/* CMODE = 0 op2(C) = I */
/* CMODE = -1 op2(C) = inv(C) */
/* C (input) REAL array, dimension (N) */
/* The vector C in the formula op(A) * op2(C). */
/* INFO (output) INTEGER */
/* = 0: Successful exit. */
/* i > 0: The ith argument is invalid. */
/* WORK (input) REAL array, dimension (3*N). */
/* Workspace. */
/* IWORK (input) INTEGER array, dimension (N). */
/* Workspace.2 */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
af_dim1 = *ldaf;
af_offset = 1 + af_dim1;
af -= af_offset;
--ipiv;
--c__;
--work;
--iwork;
/* Function Body */
ret_val = 0.f;
*info = 0;
notrans = lsame_(trans, "N");
if (! notrans && ! lsame_(trans, "T") && ! lsame_(
trans, "C")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
} else if (*ldaf < max(1,*n)) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SLA_GERCOND", &i__1);
return ret_val;
}
if (*n == 0) {
ret_val = 1.f;
return ret_val;
}
/* Compute the equilibration matrix R such that */
/* inv(R)*A*C has unit 1-norm. */
if (notrans) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
tmp = 0.f;
if (*cmode == 1) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
tmp += (r__1 = a[i__ + j * a_dim1] * c__[j], dabs(r__1));
}
} else if (*cmode == 0) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
tmp += (r__1 = a[i__ + j * a_dim1], dabs(r__1));
}
} else {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
tmp += (r__1 = a[i__ + j * a_dim1] / c__[j], dabs(r__1));
}
}
work[(*n << 1) + i__] = tmp;
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
tmp = 0.f;
if (*cmode == 1) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
tmp += (r__1 = a[j + i__ * a_dim1] * c__[j], dabs(r__1));
}
} else if (*cmode == 0) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
tmp += (r__1 = a[j + i__ * a_dim1], dabs(r__1));
}
} else {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
tmp += (r__1 = a[j + i__ * a_dim1] / c__[j], dabs(r__1));
}
}
work[(*n << 1) + i__] = tmp;
}
}
/* Estimate the norm of inv(op(A)). */
ainvnm = 0.f;
kase = 0;
L10:
slacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
if (kase != 0) {
if (kase == 2) {
/* Multiply by R. */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] *= work[(*n << 1) + i__];
}
if (notrans) {
sgetrs_("No transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[
1], &work[1], n, info);
} else {
sgetrs_("Transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[1],
&work[1], n, info);
}
/* Multiply by inv(C). */
if (*cmode == 1) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] /= c__[i__];
}
} else if (*cmode == -1) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] *= c__[i__];
}
}
} else {
/* Multiply by inv(C'). */
if (*cmode == 1) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] /= c__[i__];
}
} else if (*cmode == -1) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] *= c__[i__];
}
}
if (notrans) {
sgetrs_("Transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[1],
&work[1], n, info);
} else {
sgetrs_("No transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[
1], &work[1], n, info);
}
/* Multiply by R. */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] *= work[(*n << 1) + i__];
}
}
goto L10;
}
/* Compute the estimate of the reciprocal condition number. */
if (ainvnm != 0.f) {
ret_val = 1.f / ainvnm;
}
return ret_val;
} /* sla_gercond__ */
|