1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
/* sgtsvx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int sgtsvx_(char *fact, char *trans, integer *n, integer *
nrhs, real *dl, real *d__, real *du, real *dlf, real *df, real *duf,
real *du2, integer *ipiv, real *b, integer *ldb, real *x, integer *
ldx, real *rcond, real *ferr, real *berr, real *work, integer *iwork,
integer *info)
{
/* System generated locals */
integer b_dim1, b_offset, x_dim1, x_offset, i__1;
/* Local variables */
char norm[1];
extern logical lsame_(char *, char *);
real anorm;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *);
extern doublereal slamch_(char *);
logical nofact;
extern /* Subroutine */ int xerbla_(char *, integer *);
extern doublereal slangt_(char *, integer *, real *, real *, real *);
extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
integer *, real *, integer *), sgtcon_(char *, integer *,
real *, real *, real *, real *, integer *, real *, real *, real *,
integer *, integer *);
logical notran;
extern /* Subroutine */ int sgtrfs_(char *, integer *, integer *, real *,
real *, real *, real *, real *, real *, real *, integer *, real *,
integer *, real *, integer *, real *, real *, real *, integer *,
integer *), sgttrf_(integer *, real *, real *, real *,
real *, integer *, integer *), sgttrs_(char *, integer *, integer
*, real *, real *, real *, real *, integer *, real *, integer *,
integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SGTSVX uses the LU factorization to compute the solution to a real */
/* system of linear equations A * X = B or A**T * X = B, */
/* where A is a tridiagonal matrix of order N and X and B are N-by-NRHS */
/* matrices. */
/* Error bounds on the solution and a condition estimate are also */
/* provided. */
/* Description */
/* =========== */
/* The following steps are performed: */
/* 1. If FACT = 'N', the LU decomposition is used to factor the matrix A */
/* as A = L * U, where L is a product of permutation and unit lower */
/* bidiagonal matrices and U is upper triangular with nonzeros in */
/* only the main diagonal and first two superdiagonals. */
/* 2. If some U(i,i)=0, so that U is exactly singular, then the routine */
/* returns with INFO = i. Otherwise, the factored form of A is used */
/* to estimate the condition number of the matrix A. If the */
/* reciprocal of the condition number is less than machine precision, */
/* INFO = N+1 is returned as a warning, but the routine still goes on */
/* to solve for X and compute error bounds as described below. */
/* 3. The system of equations is solved for X using the factored form */
/* of A. */
/* 4. Iterative refinement is applied to improve the computed solution */
/* matrix and calculate error bounds and backward error estimates */
/* for it. */
/* Arguments */
/* ========= */
/* FACT (input) CHARACTER*1 */
/* Specifies whether or not the factored form of A has been */
/* supplied on entry. */
/* = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored */
/* form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV */
/* will not be modified. */
/* = 'N': The matrix will be copied to DLF, DF, and DUF */
/* and factored. */
/* TRANS (input) CHARACTER*1 */
/* Specifies the form of the system of equations: */
/* = 'N': A * X = B (No transpose) */
/* = 'T': A**T * X = B (Transpose) */
/* = 'C': A**H * X = B (Conjugate transpose = Transpose) */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrix B. NRHS >= 0. */
/* DL (input) REAL array, dimension (N-1) */
/* The (n-1) subdiagonal elements of A. */
/* D (input) REAL array, dimension (N) */
/* The n diagonal elements of A. */
/* DU (input) REAL array, dimension (N-1) */
/* The (n-1) superdiagonal elements of A. */
/* DLF (input or output) REAL array, dimension (N-1) */
/* If FACT = 'F', then DLF is an input argument and on entry */
/* contains the (n-1) multipliers that define the matrix L from */
/* the LU factorization of A as computed by SGTTRF. */
/* If FACT = 'N', then DLF is an output argument and on exit */
/* contains the (n-1) multipliers that define the matrix L from */
/* the LU factorization of A. */
/* DF (input or output) REAL array, dimension (N) */
/* If FACT = 'F', then DF is an input argument and on entry */
/* contains the n diagonal elements of the upper triangular */
/* matrix U from the LU factorization of A. */
/* If FACT = 'N', then DF is an output argument and on exit */
/* contains the n diagonal elements of the upper triangular */
/* matrix U from the LU factorization of A. */
/* DUF (input or output) REAL array, dimension (N-1) */
/* If FACT = 'F', then DUF is an input argument and on entry */
/* contains the (n-1) elements of the first superdiagonal of U. */
/* If FACT = 'N', then DUF is an output argument and on exit */
/* contains the (n-1) elements of the first superdiagonal of U. */
/* DU2 (input or output) REAL array, dimension (N-2) */
/* If FACT = 'F', then DU2 is an input argument and on entry */
/* contains the (n-2) elements of the second superdiagonal of */
/* U. */
/* If FACT = 'N', then DU2 is an output argument and on exit */
/* contains the (n-2) elements of the second superdiagonal of */
/* U. */
/* IPIV (input or output) INTEGER array, dimension (N) */
/* If FACT = 'F', then IPIV is an input argument and on entry */
/* contains the pivot indices from the LU factorization of A as */
/* computed by SGTTRF. */
/* If FACT = 'N', then IPIV is an output argument and on exit */
/* contains the pivot indices from the LU factorization of A; */
/* row i of the matrix was interchanged with row IPIV(i). */
/* IPIV(i) will always be either i or i+1; IPIV(i) = i indicates */
/* a row interchange was not required. */
/* B (input) REAL array, dimension (LDB,NRHS) */
/* The N-by-NRHS right hand side matrix B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* X (output) REAL array, dimension (LDX,NRHS) */
/* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X. LDX >= max(1,N). */
/* RCOND (output) REAL */
/* The estimate of the reciprocal condition number of the matrix */
/* A. If RCOND is less than the machine precision (in */
/* particular, if RCOND = 0), the matrix is singular to working */
/* precision. This condition is indicated by a return code of */
/* INFO > 0. */
/* FERR (output) REAL array, dimension (NRHS) */
/* The estimated forward error bound for each solution vector */
/* X(j) (the j-th column of the solution matrix X). */
/* If XTRUE is the true solution corresponding to X(j), FERR(j) */
/* is an estimated upper bound for the magnitude of the largest */
/* element in (X(j) - XTRUE) divided by the magnitude of the */
/* largest element in X(j). The estimate is as reliable as */
/* the estimate for RCOND, and is almost always a slight */
/* overestimate of the true error. */
/* BERR (output) REAL array, dimension (NRHS) */
/* The componentwise relative backward error of each solution */
/* vector X(j) (i.e., the smallest relative change in */
/* any element of A or B that makes X(j) an exact solution). */
/* WORK (workspace) REAL array, dimension (3*N) */
/* IWORK (workspace) INTEGER array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, and i is */
/* <= N: U(i,i) is exactly zero. The factorization */
/* has not been completed unless i = N, but the */
/* factor U is exactly singular, so the solution */
/* and error bounds could not be computed. */
/* RCOND = 0 is returned. */
/* = N+1: U is nonsingular, but RCOND is less than machine */
/* precision, meaning that the matrix is singular */
/* to working precision. Nevertheless, the */
/* solution and error bounds are computed because */
/* there are a number of situations where the */
/* computed solution can be more accurate than the */
/* value of RCOND would suggest. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--dl;
--d__;
--du;
--dlf;
--df;
--duf;
--du2;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--ferr;
--berr;
--work;
--iwork;
/* Function Body */
*info = 0;
nofact = lsame_(fact, "N");
notran = lsame_(trans, "N");
if (! nofact && ! lsame_(fact, "F")) {
*info = -1;
} else if (! notran && ! lsame_(trans, "T") && !
lsame_(trans, "C")) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*nrhs < 0) {
*info = -4;
} else if (*ldb < max(1,*n)) {
*info = -14;
} else if (*ldx < max(1,*n)) {
*info = -16;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGTSVX", &i__1);
return 0;
}
if (nofact) {
/* Compute the LU factorization of A. */
scopy_(n, &d__[1], &c__1, &df[1], &c__1);
if (*n > 1) {
i__1 = *n - 1;
scopy_(&i__1, &dl[1], &c__1, &dlf[1], &c__1);
i__1 = *n - 1;
scopy_(&i__1, &du[1], &c__1, &duf[1], &c__1);
}
sgttrf_(n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], info);
/* Return if INFO is non-zero. */
if (*info > 0) {
*rcond = 0.f;
return 0;
}
}
/* Compute the norm of the matrix A. */
if (notran) {
*(unsigned char *)norm = '1';
} else {
*(unsigned char *)norm = 'I';
}
anorm = slangt_(norm, n, &dl[1], &d__[1], &du[1]);
/* Compute the reciprocal of the condition number of A. */
sgtcon_(norm, n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &anorm,
rcond, &work[1], &iwork[1], info);
/* Compute the solution vectors X. */
slacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
sgttrs_(trans, n, nrhs, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &x[
x_offset], ldx, info);
/* Use iterative refinement to improve the computed solutions and */
/* compute error bounds and backward error estimates for them. */
sgtrfs_(trans, n, nrhs, &dl[1], &d__[1], &du[1], &dlf[1], &df[1], &duf[1],
&du2[1], &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1]
, &berr[1], &work[1], &iwork[1], info);
/* Set INFO = N+1 if the matrix is singular to working precision. */
if (*rcond < slamch_("Epsilon")) {
*info = *n + 1;
}
return 0;
/* End of SGTSVX */
} /* sgtsvx_ */
|