1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
/* sggsvp.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static real c_b12 = 0.f;
static real c_b22 = 1.f;
/* Subroutine */ int sggsvp_(char *jobu, char *jobv, char *jobq, integer *m,
integer *p, integer *n, real *a, integer *lda, real *b, integer *ldb,
real *tola, real *tolb, integer *k, integer *l, real *u, integer *ldu,
real *v, integer *ldv, real *q, integer *ldq, integer *iwork, real *
tau, real *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
u_offset, v_dim1, v_offset, i__1, i__2, i__3;
real r__1;
/* Local variables */
integer i__, j;
extern logical lsame_(char *, char *);
logical wantq, wantu, wantv;
extern /* Subroutine */ int sgeqr2_(integer *, integer *, real *, integer
*, real *, real *, integer *), sgerq2_(integer *, integer *, real
*, integer *, real *, real *, integer *), sorg2r_(integer *,
integer *, integer *, real *, integer *, real *, real *, integer *
), sorm2r_(char *, char *, integer *, integer *, integer *, real *
, integer *, real *, real *, integer *, real *, integer *), sormr2_(char *, char *, integer *, integer *, integer *,
real *, integer *, real *, real *, integer *, real *, integer *), xerbla_(char *, integer *), sgeqpf_(
integer *, integer *, real *, integer *, integer *, real *, real *
, integer *), slacpy_(char *, integer *, integer *, real *,
integer *, real *, integer *), slaset_(char *, integer *,
integer *, real *, real *, real *, integer *), slapmt_(
logical *, integer *, integer *, real *, integer *, integer *);
logical forwrd;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SGGSVP computes orthogonal matrices U, V and Q such that */
/* N-K-L K L */
/* U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; */
/* L ( 0 0 A23 ) */
/* M-K-L ( 0 0 0 ) */
/* N-K-L K L */
/* = K ( 0 A12 A13 ) if M-K-L < 0; */
/* M-K ( 0 0 A23 ) */
/* N-K-L K L */
/* V'*B*Q = L ( 0 0 B13 ) */
/* P-L ( 0 0 0 ) */
/* where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
/* upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
/* otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective */
/* numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the */
/* transpose of Z. */
/* This decomposition is the preprocessing step for computing the */
/* Generalized Singular Value Decomposition (GSVD), see subroutine */
/* SGGSVD. */
/* Arguments */
/* ========= */
/* JOBU (input) CHARACTER*1 */
/* = 'U': Orthogonal matrix U is computed; */
/* = 'N': U is not computed. */
/* JOBV (input) CHARACTER*1 */
/* = 'V': Orthogonal matrix V is computed; */
/* = 'N': V is not computed. */
/* JOBQ (input) CHARACTER*1 */
/* = 'Q': Orthogonal matrix Q is computed; */
/* = 'N': Q is not computed. */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* P (input) INTEGER */
/* The number of rows of the matrix B. P >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrices A and B. N >= 0. */
/* A (input/output) REAL array, dimension (LDA,N) */
/* On entry, the M-by-N matrix A. */
/* On exit, A contains the triangular (or trapezoidal) matrix */
/* described in the Purpose section. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* B (input/output) REAL array, dimension (LDB,N) */
/* On entry, the P-by-N matrix B. */
/* On exit, B contains the triangular matrix described in */
/* the Purpose section. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,P). */
/* TOLA (input) REAL */
/* TOLB (input) REAL */
/* TOLA and TOLB are the thresholds to determine the effective */
/* numerical rank of matrix B and a subblock of A. Generally, */
/* they are set to */
/* TOLA = MAX(M,N)*norm(A)*MACHEPS, */
/* TOLB = MAX(P,N)*norm(B)*MACHEPS. */
/* The size of TOLA and TOLB may affect the size of backward */
/* errors of the decomposition. */
/* K (output) INTEGER */
/* L (output) INTEGER */
/* On exit, K and L specify the dimension of the subblocks */
/* described in Purpose. */
/* K + L = effective numerical rank of (A',B')'. */
/* U (output) REAL array, dimension (LDU,M) */
/* If JOBU = 'U', U contains the orthogonal matrix U. */
/* If JOBU = 'N', U is not referenced. */
/* LDU (input) INTEGER */
/* The leading dimension of the array U. LDU >= max(1,M) if */
/* JOBU = 'U'; LDU >= 1 otherwise. */
/* V (output) REAL array, dimension (LDV,P) */
/* If JOBV = 'V', V contains the orthogonal matrix V. */
/* If JOBV = 'N', V is not referenced. */
/* LDV (input) INTEGER */
/* The leading dimension of the array V. LDV >= max(1,P) if */
/* JOBV = 'V'; LDV >= 1 otherwise. */
/* Q (output) REAL array, dimension (LDQ,N) */
/* If JOBQ = 'Q', Q contains the orthogonal matrix Q. */
/* If JOBQ = 'N', Q is not referenced. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. LDQ >= max(1,N) if */
/* JOBQ = 'Q'; LDQ >= 1 otherwise. */
/* IWORK (workspace) INTEGER array, dimension (N) */
/* TAU (workspace) REAL array, dimension (N) */
/* WORK (workspace) REAL array, dimension (max(3*N,M,P)) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* Further Details */
/* =============== */
/* The subroutine uses LAPACK subroutine SGEQPF for the QR factorization */
/* with column pivoting to detect the effective numerical rank of the */
/* a matrix. It may be replaced by a better rank determination strategy. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
u_dim1 = *ldu;
u_offset = 1 + u_dim1;
u -= u_offset;
v_dim1 = *ldv;
v_offset = 1 + v_dim1;
v -= v_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
--iwork;
--tau;
--work;
/* Function Body */
wantu = lsame_(jobu, "U");
wantv = lsame_(jobv, "V");
wantq = lsame_(jobq, "Q");
forwrd = TRUE_;
*info = 0;
if (! (wantu || lsame_(jobu, "N"))) {
*info = -1;
} else if (! (wantv || lsame_(jobv, "N"))) {
*info = -2;
} else if (! (wantq || lsame_(jobq, "N"))) {
*info = -3;
} else if (*m < 0) {
*info = -4;
} else if (*p < 0) {
*info = -5;
} else if (*n < 0) {
*info = -6;
} else if (*lda < max(1,*m)) {
*info = -8;
} else if (*ldb < max(1,*p)) {
*info = -10;
} else if (*ldu < 1 || wantu && *ldu < *m) {
*info = -16;
} else if (*ldv < 1 || wantv && *ldv < *p) {
*info = -18;
} else if (*ldq < 1 || wantq && *ldq < *n) {
*info = -20;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGGSVP", &i__1);
return 0;
}
/* QR with column pivoting of B: B*P = V*( S11 S12 ) */
/* ( 0 0 ) */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
iwork[i__] = 0;
/* L10: */
}
sgeqpf_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], info);
/* Update A := A*P */
slapmt_(&forwrd, m, n, &a[a_offset], lda, &iwork[1]);
/* Determine the effective rank of matrix B. */
*l = 0;
i__1 = min(*p,*n);
for (i__ = 1; i__ <= i__1; ++i__) {
if ((r__1 = b[i__ + i__ * b_dim1], dabs(r__1)) > *tolb) {
++(*l);
}
/* L20: */
}
if (wantv) {
/* Copy the details of V, and form V. */
slaset_("Full", p, p, &c_b12, &c_b12, &v[v_offset], ldv);
if (*p > 1) {
i__1 = *p - 1;
slacpy_("Lower", &i__1, n, &b[b_dim1 + 2], ldb, &v[v_dim1 + 2],
ldv);
}
i__1 = min(*p,*n);
sorg2r_(p, p, &i__1, &v[v_offset], ldv, &tau[1], &work[1], info);
}
/* Clean up B */
i__1 = *l - 1;
for (j = 1; j <= i__1; ++j) {
i__2 = *l;
for (i__ = j + 1; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] = 0.f;
/* L30: */
}
/* L40: */
}
if (*p > *l) {
i__1 = *p - *l;
slaset_("Full", &i__1, n, &c_b12, &c_b12, &b[*l + 1 + b_dim1], ldb);
}
if (wantq) {
/* Set Q = I and Update Q := Q*P */
slaset_("Full", n, n, &c_b12, &c_b22, &q[q_offset], ldq);
slapmt_(&forwrd, n, n, &q[q_offset], ldq, &iwork[1]);
}
if (*p >= *l && *n != *l) {
/* RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z */
sgerq2_(l, n, &b[b_offset], ldb, &tau[1], &work[1], info);
/* Update A := A*Z' */
sormr2_("Right", "Transpose", m, n, l, &b[b_offset], ldb, &tau[1], &a[
a_offset], lda, &work[1], info);
if (wantq) {
/* Update Q := Q*Z' */
sormr2_("Right", "Transpose", n, n, l, &b[b_offset], ldb, &tau[1],
&q[q_offset], ldq, &work[1], info);
}
/* Clean up B */
i__1 = *n - *l;
slaset_("Full", l, &i__1, &c_b12, &c_b12, &b[b_offset], ldb);
i__1 = *n;
for (j = *n - *l + 1; j <= i__1; ++j) {
i__2 = *l;
for (i__ = j - *n + *l + 1; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] = 0.f;
/* L50: */
}
/* L60: */
}
}
/* Let N-L L */
/* A = ( A11 A12 ) M, */
/* then the following does the complete QR decomposition of A11: */
/* A11 = U*( 0 T12 )*P1' */
/* ( 0 0 ) */
i__1 = *n - *l;
for (i__ = 1; i__ <= i__1; ++i__) {
iwork[i__] = 0;
/* L70: */
}
i__1 = *n - *l;
sgeqpf_(m, &i__1, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], info);
/* Determine the effective rank of A11 */
*k = 0;
/* Computing MIN */
i__2 = *m, i__3 = *n - *l;
i__1 = min(i__2,i__3);
for (i__ = 1; i__ <= i__1; ++i__) {
if ((r__1 = a[i__ + i__ * a_dim1], dabs(r__1)) > *tola) {
++(*k);
}
/* L80: */
}
/* Update A12 := U'*A12, where A12 = A( 1:M, N-L+1:N ) */
/* Computing MIN */
i__2 = *m, i__3 = *n - *l;
i__1 = min(i__2,i__3);
sorm2r_("Left", "Transpose", m, l, &i__1, &a[a_offset], lda, &tau[1], &a[(
*n - *l + 1) * a_dim1 + 1], lda, &work[1], info);
if (wantu) {
/* Copy the details of U, and form U */
slaset_("Full", m, m, &c_b12, &c_b12, &u[u_offset], ldu);
if (*m > 1) {
i__1 = *m - 1;
i__2 = *n - *l;
slacpy_("Lower", &i__1, &i__2, &a[a_dim1 + 2], lda, &u[u_dim1 + 2]
, ldu);
}
/* Computing MIN */
i__2 = *m, i__3 = *n - *l;
i__1 = min(i__2,i__3);
sorg2r_(m, m, &i__1, &u[u_offset], ldu, &tau[1], &work[1], info);
}
if (wantq) {
/* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 */
i__1 = *n - *l;
slapmt_(&forwrd, n, &i__1, &q[q_offset], ldq, &iwork[1]);
}
/* Clean up A: set the strictly lower triangular part of */
/* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. */
i__1 = *k - 1;
for (j = 1; j <= i__1; ++j) {
i__2 = *k;
for (i__ = j + 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = 0.f;
/* L90: */
}
/* L100: */
}
if (*m > *k) {
i__1 = *m - *k;
i__2 = *n - *l;
slaset_("Full", &i__1, &i__2, &c_b12, &c_b12, &a[*k + 1 + a_dim1],
lda);
}
if (*n - *l > *k) {
/* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 */
i__1 = *n - *l;
sgerq2_(k, &i__1, &a[a_offset], lda, &tau[1], &work[1], info);
if (wantq) {
/* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1' */
i__1 = *n - *l;
sormr2_("Right", "Transpose", n, &i__1, k, &a[a_offset], lda, &
tau[1], &q[q_offset], ldq, &work[1], info);
}
/* Clean up A */
i__1 = *n - *l - *k;
slaset_("Full", k, &i__1, &c_b12, &c_b12, &a[a_offset], lda);
i__1 = *n - *l;
for (j = *n - *l - *k + 1; j <= i__1; ++j) {
i__2 = *k;
for (i__ = j - *n + *l + *k + 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = 0.f;
/* L110: */
}
/* L120: */
}
}
if (*m > *k) {
/* QR factorization of A( K+1:M,N-L+1:N ) */
i__1 = *m - *k;
sgeqr2_(&i__1, l, &a[*k + 1 + (*n - *l + 1) * a_dim1], lda, &tau[1], &
work[1], info);
if (wantu) {
/* Update U(:,K+1:M) := U(:,K+1:M)*U1 */
i__1 = *m - *k;
/* Computing MIN */
i__3 = *m - *k;
i__2 = min(i__3,*l);
sorm2r_("Right", "No transpose", m, &i__1, &i__2, &a[*k + 1 + (*n
- *l + 1) * a_dim1], lda, &tau[1], &u[(*k + 1) * u_dim1 +
1], ldu, &work[1], info);
}
/* Clean up */
i__1 = *n;
for (j = *n - *l + 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = j - *n + *k + *l + 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = 0.f;
/* L130: */
}
/* L140: */
}
}
return 0;
/* End of SGGSVP */
} /* sggsvp_ */
|