1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
/* sggsvd.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int sggsvd_(char *jobu, char *jobv, char *jobq, integer *m,
integer *n, integer *p, integer *k, integer *l, real *a, integer *lda,
real *b, integer *ldb, real *alpha, real *beta, real *u, integer *
ldu, real *v, integer *ldv, real *q, integer *ldq, real *work,
integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
u_offset, v_dim1, v_offset, i__1, i__2;
/* Local variables */
integer i__, j;
real ulp;
integer ibnd;
real tola;
integer isub;
real tolb, unfl, temp, smax;
extern logical lsame_(char *, char *);
real anorm, bnorm;
logical wantq;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *);
logical wantu, wantv;
extern doublereal slamch_(char *), slange_(char *, integer *,
integer *, real *, integer *, real *);
integer ncycle;
extern /* Subroutine */ int xerbla_(char *, integer *), stgsja_(
char *, char *, char *, integer *, integer *, integer *, integer *
, integer *, real *, integer *, real *, integer *, real *, real *,
real *, real *, real *, integer *, real *, integer *, real *,
integer *, real *, integer *, integer *),
sggsvp_(char *, char *, char *, integer *, integer *, integer *,
real *, integer *, real *, integer *, real *, real *, integer *,
integer *, real *, integer *, real *, integer *, real *, integer *
, integer *, real *, real *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SGGSVD computes the generalized singular value decomposition (GSVD) */
/* of an M-by-N real matrix A and P-by-N real matrix B: */
/* U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ) */
/* where U, V and Q are orthogonal matrices, and Z' is the transpose */
/* of Z. Let K+L = the effective numerical rank of the matrix (A',B')', */
/* then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and */
/* D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the */
/* following structures, respectively: */
/* If M-K-L >= 0, */
/* K L */
/* D1 = K ( I 0 ) */
/* L ( 0 C ) */
/* M-K-L ( 0 0 ) */
/* K L */
/* D2 = L ( 0 S ) */
/* P-L ( 0 0 ) */
/* N-K-L K L */
/* ( 0 R ) = K ( 0 R11 R12 ) */
/* L ( 0 0 R22 ) */
/* where */
/* C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
/* S = diag( BETA(K+1), ... , BETA(K+L) ), */
/* C**2 + S**2 = I. */
/* R is stored in A(1:K+L,N-K-L+1:N) on exit. */
/* If M-K-L < 0, */
/* K M-K K+L-M */
/* D1 = K ( I 0 0 ) */
/* M-K ( 0 C 0 ) */
/* K M-K K+L-M */
/* D2 = M-K ( 0 S 0 ) */
/* K+L-M ( 0 0 I ) */
/* P-L ( 0 0 0 ) */
/* N-K-L K M-K K+L-M */
/* ( 0 R ) = K ( 0 R11 R12 R13 ) */
/* M-K ( 0 0 R22 R23 ) */
/* K+L-M ( 0 0 0 R33 ) */
/* where */
/* C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
/* S = diag( BETA(K+1), ... , BETA(M) ), */
/* C**2 + S**2 = I. */
/* (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored */
/* ( 0 R22 R23 ) */
/* in B(M-K+1:L,N+M-K-L+1:N) on exit. */
/* The routine computes C, S, R, and optionally the orthogonal */
/* transformation matrices U, V and Q. */
/* In particular, if B is an N-by-N nonsingular matrix, then the GSVD of */
/* A and B implicitly gives the SVD of A*inv(B): */
/* A*inv(B) = U*(D1*inv(D2))*V'. */
/* If ( A',B')' has orthonormal columns, then the GSVD of A and B is */
/* also equal to the CS decomposition of A and B. Furthermore, the GSVD */
/* can be used to derive the solution of the eigenvalue problem: */
/* A'*A x = lambda* B'*B x. */
/* In some literature, the GSVD of A and B is presented in the form */
/* U'*A*X = ( 0 D1 ), V'*B*X = ( 0 D2 ) */
/* where U and V are orthogonal and X is nonsingular, D1 and D2 are */
/* ``diagonal''. The former GSVD form can be converted to the latter */
/* form by taking the nonsingular matrix X as */
/* X = Q*( I 0 ) */
/* ( 0 inv(R) ). */
/* Arguments */
/* ========= */
/* JOBU (input) CHARACTER*1 */
/* = 'U': Orthogonal matrix U is computed; */
/* = 'N': U is not computed. */
/* JOBV (input) CHARACTER*1 */
/* = 'V': Orthogonal matrix V is computed; */
/* = 'N': V is not computed. */
/* JOBQ (input) CHARACTER*1 */
/* = 'Q': Orthogonal matrix Q is computed; */
/* = 'N': Q is not computed. */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrices A and B. N >= 0. */
/* P (input) INTEGER */
/* The number of rows of the matrix B. P >= 0. */
/* K (output) INTEGER */
/* L (output) INTEGER */
/* On exit, K and L specify the dimension of the subblocks */
/* described in the Purpose section. */
/* K + L = effective numerical rank of (A',B')'. */
/* A (input/output) REAL array, dimension (LDA,N) */
/* On entry, the M-by-N matrix A. */
/* On exit, A contains the triangular matrix R, or part of R. */
/* See Purpose for details. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* B (input/output) REAL array, dimension (LDB,N) */
/* On entry, the P-by-N matrix B. */
/* On exit, B contains the triangular matrix R if M-K-L < 0. */
/* See Purpose for details. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,P). */
/* ALPHA (output) REAL array, dimension (N) */
/* BETA (output) REAL array, dimension (N) */
/* On exit, ALPHA and BETA contain the generalized singular */
/* value pairs of A and B; */
/* ALPHA(1:K) = 1, */
/* BETA(1:K) = 0, */
/* and if M-K-L >= 0, */
/* ALPHA(K+1:K+L) = C, */
/* BETA(K+1:K+L) = S, */
/* or if M-K-L < 0, */
/* ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 */
/* BETA(K+1:M) =S, BETA(M+1:K+L) =1 */
/* and */
/* ALPHA(K+L+1:N) = 0 */
/* BETA(K+L+1:N) = 0 */
/* U (output) REAL array, dimension (LDU,M) */
/* If JOBU = 'U', U contains the M-by-M orthogonal matrix U. */
/* If JOBU = 'N', U is not referenced. */
/* LDU (input) INTEGER */
/* The leading dimension of the array U. LDU >= max(1,M) if */
/* JOBU = 'U'; LDU >= 1 otherwise. */
/* V (output) REAL array, dimension (LDV,P) */
/* If JOBV = 'V', V contains the P-by-P orthogonal matrix V. */
/* If JOBV = 'N', V is not referenced. */
/* LDV (input) INTEGER */
/* The leading dimension of the array V. LDV >= max(1,P) if */
/* JOBV = 'V'; LDV >= 1 otherwise. */
/* Q (output) REAL array, dimension (LDQ,N) */
/* If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q. */
/* If JOBQ = 'N', Q is not referenced. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. LDQ >= max(1,N) if */
/* JOBQ = 'Q'; LDQ >= 1 otherwise. */
/* WORK (workspace) REAL array, */
/* dimension (max(3*N,M,P)+N) */
/* IWORK (workspace/output) INTEGER array, dimension (N) */
/* On exit, IWORK stores the sorting information. More */
/* precisely, the following loop will sort ALPHA */
/* for I = K+1, min(M,K+L) */
/* swap ALPHA(I) and ALPHA(IWORK(I)) */
/* endfor */
/* such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: if INFO = 1, the Jacobi-type procedure failed to */
/* converge. For further details, see subroutine STGSJA. */
/* Internal Parameters */
/* =================== */
/* TOLA REAL */
/* TOLB REAL */
/* TOLA and TOLB are the thresholds to determine the effective */
/* rank of (A',B')'. Generally, they are set to */
/* TOLA = MAX(M,N)*norm(A)*MACHEPS, */
/* TOLB = MAX(P,N)*norm(B)*MACHEPS. */
/* The size of TOLA and TOLB may affect the size of backward */
/* errors of the decomposition. */
/* Further Details */
/* =============== */
/* 2-96 Based on modifications by */
/* Ming Gu and Huan Ren, Computer Science Division, University of */
/* California at Berkeley, USA */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--alpha;
--beta;
u_dim1 = *ldu;
u_offset = 1 + u_dim1;
u -= u_offset;
v_dim1 = *ldv;
v_offset = 1 + v_dim1;
v -= v_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
--work;
--iwork;
/* Function Body */
wantu = lsame_(jobu, "U");
wantv = lsame_(jobv, "V");
wantq = lsame_(jobq, "Q");
*info = 0;
if (! (wantu || lsame_(jobu, "N"))) {
*info = -1;
} else if (! (wantv || lsame_(jobv, "N"))) {
*info = -2;
} else if (! (wantq || lsame_(jobq, "N"))) {
*info = -3;
} else if (*m < 0) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*p < 0) {
*info = -6;
} else if (*lda < max(1,*m)) {
*info = -10;
} else if (*ldb < max(1,*p)) {
*info = -12;
} else if (*ldu < 1 || wantu && *ldu < *m) {
*info = -16;
} else if (*ldv < 1 || wantv && *ldv < *p) {
*info = -18;
} else if (*ldq < 1 || wantq && *ldq < *n) {
*info = -20;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGGSVD", &i__1);
return 0;
}
/* Compute the Frobenius norm of matrices A and B */
anorm = slange_("1", m, n, &a[a_offset], lda, &work[1]);
bnorm = slange_("1", p, n, &b[b_offset], ldb, &work[1]);
/* Get machine precision and set up threshold for determining */
/* the effective numerical rank of the matrices A and B. */
ulp = slamch_("Precision");
unfl = slamch_("Safe Minimum");
tola = max(*m,*n) * dmax(anorm,unfl) * ulp;
tolb = max(*p,*n) * dmax(bnorm,unfl) * ulp;
/* Preprocessing */
sggsvp_(jobu, jobv, jobq, m, p, n, &a[a_offset], lda, &b[b_offset], ldb, &
tola, &tolb, k, l, &u[u_offset], ldu, &v[v_offset], ldv, &q[
q_offset], ldq, &iwork[1], &work[1], &work[*n + 1], info);
/* Compute the GSVD of two upper "triangular" matrices */
stgsja_(jobu, jobv, jobq, m, p, n, k, l, &a[a_offset], lda, &b[b_offset],
ldb, &tola, &tolb, &alpha[1], &beta[1], &u[u_offset], ldu, &v[
v_offset], ldv, &q[q_offset], ldq, &work[1], &ncycle, info);
/* Sort the singular values and store the pivot indices in IWORK */
/* Copy ALPHA to WORK, then sort ALPHA in WORK */
scopy_(n, &alpha[1], &c__1, &work[1], &c__1);
/* Computing MIN */
i__1 = *l, i__2 = *m - *k;
ibnd = min(i__1,i__2);
i__1 = ibnd;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Scan for largest ALPHA(K+I) */
isub = i__;
smax = work[*k + i__];
i__2 = ibnd;
for (j = i__ + 1; j <= i__2; ++j) {
temp = work[*k + j];
if (temp > smax) {
isub = j;
smax = temp;
}
/* L10: */
}
if (isub != i__) {
work[*k + isub] = work[*k + i__];
work[*k + i__] = smax;
iwork[*k + i__] = *k + isub;
} else {
iwork[*k + i__] = *k + i__;
}
/* L20: */
}
return 0;
/* End of SGGSVD */
} /* sggsvd_ */
|