1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
|
/* sggesx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c__0 = 0;
static integer c_n1 = -1;
static real c_b42 = 0.f;
static real c_b43 = 1.f;
/* Subroutine */ int sggesx_(char *jobvsl, char *jobvsr, char *sort, L_fp
selctg, char *sense, integer *n, real *a, integer *lda, real *b,
integer *ldb, integer *sdim, real *alphar, real *alphai, real *beta,
real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real *rconde,
real *rcondv, real *work, integer *lwork, integer *iwork, integer *
liwork, logical *bwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
vsr_dim1, vsr_offset, i__1, i__2;
real r__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, ip;
real pl, pr, dif[2];
integer ihi, ilo;
real eps;
integer ijob;
real anrm, bnrm;
integer ierr, itau, iwrk, lwrk;
extern logical lsame_(char *, char *);
integer ileft, icols;
logical cursl, ilvsl, ilvsr;
integer irows;
logical lst2sl;
extern /* Subroutine */ int slabad_(real *, real *), sggbak_(char *, char
*, integer *, integer *, integer *, real *, real *, integer *,
real *, integer *, integer *), sggbal_(char *,
integer *, real *, integer *, real *, integer *, integer *,
integer *, real *, real *, real *, integer *);
logical ilascl, ilbscl;
extern doublereal slamch_(char *), slange_(char *, integer *,
integer *, real *, integer *, real *);
real safmin;
extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *,
integer *, real *, integer *, real *, integer *, real *, integer *
, real *, integer *, integer *);
real safmax;
extern /* Subroutine */ int xerbla_(char *, integer *);
real bignum;
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, real *, integer *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
integer ijobvl, iright;
extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer
*, real *, real *, integer *, integer *);
integer ijobvr;
extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
integer *, real *, integer *);
logical wantsb, wantse, lastsl;
integer liwmin;
real anrmto, bnrmto;
integer minwrk, maxwrk;
logical wantsn;
real smlnum;
extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *,
integer *, integer *, real *, integer *, real *, integer *, real *
, real *, real *, real *, integer *, real *, integer *, real *,
integer *, integer *), slaset_(char *,
integer *, integer *, real *, real *, real *, integer *),
sorgqr_(integer *, integer *, integer *, real *, integer *, real *
, real *, integer *, integer *), stgsen_(integer *, logical *,
logical *, logical *, integer *, real *, integer *, real *,
integer *, real *, real *, real *, real *, integer *, real *,
integer *, integer *, real *, real *, real *, real *, integer *,
integer *, integer *, integer *);
logical wantst, lquery, wantsv;
extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *,
integer *, real *, integer *, real *, real *, integer *, real *,
integer *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* .. Function Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SGGESX computes for a pair of N-by-N real nonsymmetric matrices */
/* (A,B), the generalized eigenvalues, the real Schur form (S,T), and, */
/* optionally, the left and/or right matrices of Schur vectors (VSL and */
/* VSR). This gives the generalized Schur factorization */
/* (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T ) */
/* Optionally, it also orders the eigenvalues so that a selected cluster */
/* of eigenvalues appears in the leading diagonal blocks of the upper */
/* quasi-triangular matrix S and the upper triangular matrix T; computes */
/* a reciprocal condition number for the average of the selected */
/* eigenvalues (RCONDE); and computes a reciprocal condition number for */
/* the right and left deflating subspaces corresponding to the selected */
/* eigenvalues (RCONDV). The leading columns of VSL and VSR then form */
/* an orthonormal basis for the corresponding left and right eigenspaces */
/* (deflating subspaces). */
/* A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
/* or a ratio alpha/beta = w, such that A - w*B is singular. It is */
/* usually represented as the pair (alpha,beta), as there is a */
/* reasonable interpretation for beta=0 or for both being zero. */
/* A pair of matrices (S,T) is in generalized real Schur form if T is */
/* upper triangular with non-negative diagonal and S is block upper */
/* triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */
/* to real generalized eigenvalues, while 2-by-2 blocks of S will be */
/* "standardized" by making the corresponding elements of T have the */
/* form: */
/* [ a 0 ] */
/* [ 0 b ] */
/* and the pair of corresponding 2-by-2 blocks in S and T will have a */
/* complex conjugate pair of generalized eigenvalues. */
/* Arguments */
/* ========= */
/* JOBVSL (input) CHARACTER*1 */
/* = 'N': do not compute the left Schur vectors; */
/* = 'V': compute the left Schur vectors. */
/* JOBVSR (input) CHARACTER*1 */
/* = 'N': do not compute the right Schur vectors; */
/* = 'V': compute the right Schur vectors. */
/* SORT (input) CHARACTER*1 */
/* Specifies whether or not to order the eigenvalues on the */
/* diagonal of the generalized Schur form. */
/* = 'N': Eigenvalues are not ordered; */
/* = 'S': Eigenvalues are ordered (see SELCTG). */
/* SELCTG (external procedure) LOGICAL FUNCTION of three REAL arguments */
/* SELCTG must be declared EXTERNAL in the calling subroutine. */
/* If SORT = 'N', SELCTG is not referenced. */
/* If SORT = 'S', SELCTG is used to select eigenvalues to sort */
/* to the top left of the Schur form. */
/* An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
/* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */
/* one of a complex conjugate pair of eigenvalues is selected, */
/* then both complex eigenvalues are selected. */
/* Note that a selected complex eigenvalue may no longer satisfy */
/* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering, */
/* since ordering may change the value of complex eigenvalues */
/* (especially if the eigenvalue is ill-conditioned), in this */
/* case INFO is set to N+3. */
/* SENSE (input) CHARACTER*1 */
/* Determines which reciprocal condition numbers are computed. */
/* = 'N' : None are computed; */
/* = 'E' : Computed for average of selected eigenvalues only; */
/* = 'V' : Computed for selected deflating subspaces only; */
/* = 'B' : Computed for both. */
/* If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. */
/* N (input) INTEGER */
/* The order of the matrices A, B, VSL, and VSR. N >= 0. */
/* A (input/output) REAL array, dimension (LDA, N) */
/* On entry, the first of the pair of matrices. */
/* On exit, A has been overwritten by its generalized Schur */
/* form S. */
/* LDA (input) INTEGER */
/* The leading dimension of A. LDA >= max(1,N). */
/* B (input/output) REAL array, dimension (LDB, N) */
/* On entry, the second of the pair of matrices. */
/* On exit, B has been overwritten by its generalized Schur */
/* form T. */
/* LDB (input) INTEGER */
/* The leading dimension of B. LDB >= max(1,N). */
/* SDIM (output) INTEGER */
/* If SORT = 'N', SDIM = 0. */
/* If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
/* for which SELCTG is true. (Complex conjugate pairs for which */
/* SELCTG is true for either eigenvalue count as 2.) */
/* ALPHAR (output) REAL array, dimension (N) */
/* ALPHAI (output) REAL array, dimension (N) */
/* BETA (output) REAL array, dimension (N) */
/* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
/* be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */
/* and BETA(j),j=1,...,N are the diagonals of the complex Schur */
/* form (S,T) that would result if the 2-by-2 diagonal blocks of */
/* the real Schur form of (A,B) were further reduced to */
/* triangular form using 2-by-2 complex unitary transformations. */
/* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
/* positive, then the j-th and (j+1)-st eigenvalues are a */
/* complex conjugate pair, with ALPHAI(j+1) negative. */
/* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
/* may easily over- or underflow, and BETA(j) may even be zero. */
/* Thus, the user should avoid naively computing the ratio. */
/* However, ALPHAR and ALPHAI will be always less than and */
/* usually comparable with norm(A) in magnitude, and BETA always */
/* less than and usually comparable with norm(B). */
/* VSL (output) REAL array, dimension (LDVSL,N) */
/* If JOBVSL = 'V', VSL will contain the left Schur vectors. */
/* Not referenced if JOBVSL = 'N'. */
/* LDVSL (input) INTEGER */
/* The leading dimension of the matrix VSL. LDVSL >=1, and */
/* if JOBVSL = 'V', LDVSL >= N. */
/* VSR (output) REAL array, dimension (LDVSR,N) */
/* If JOBVSR = 'V', VSR will contain the right Schur vectors. */
/* Not referenced if JOBVSR = 'N'. */
/* LDVSR (input) INTEGER */
/* The leading dimension of the matrix VSR. LDVSR >= 1, and */
/* if JOBVSR = 'V', LDVSR >= N. */
/* RCONDE (output) REAL array, dimension ( 2 ) */
/* If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the */
/* reciprocal condition numbers for the average of the selected */
/* eigenvalues. */
/* Not referenced if SENSE = 'N' or 'V'. */
/* RCONDV (output) REAL array, dimension ( 2 ) */
/* If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the */
/* reciprocal condition numbers for the selected deflating */
/* subspaces. */
/* Not referenced if SENSE = 'N' or 'E'. */
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. */
/* If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B', */
/* LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else */
/* LWORK >= max( 8*N, 6*N+16 ). */
/* Note that 2*SDIM*(N-SDIM) <= N*N/2. */
/* Note also that an error is only returned if */
/* LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B' */
/* this may not be large enough. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the bound on the optimal size of the WORK */
/* array and the minimum size of the IWORK array, returns these */
/* values as the first entries of the WORK and IWORK arrays, and */
/* no error message related to LWORK or LIWORK is issued by */
/* XERBLA. */
/* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */
/* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
/* LIWORK (input) INTEGER */
/* The dimension of the array IWORK. */
/* If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise */
/* LIWORK >= N+6. */
/* If LIWORK = -1, then a workspace query is assumed; the */
/* routine only calculates the bound on the optimal size of the */
/* WORK array and the minimum size of the IWORK array, returns */
/* these values as the first entries of the WORK and IWORK */
/* arrays, and no error message related to LWORK or LIWORK is */
/* issued by XERBLA. */
/* BWORK (workspace) LOGICAL array, dimension (N) */
/* Not referenced if SORT = 'N'. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* = 1,...,N: */
/* The QZ iteration failed. (A,B) are not in Schur */
/* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
/* be correct for j=INFO+1,...,N. */
/* > N: =N+1: other than QZ iteration failed in SHGEQZ */
/* =N+2: after reordering, roundoff changed values of */
/* some complex eigenvalues so that leading */
/* eigenvalues in the Generalized Schur form no */
/* longer satisfy SELCTG=.TRUE. This could also */
/* be caused due to scaling. */
/* =N+3: reordering failed in STGSEN. */
/* Further details */
/* =============== */
/* An approximate (asymptotic) bound on the average absolute error of */
/* the selected eigenvalues is */
/* EPS * norm((A, B)) / RCONDE( 1 ). */
/* An approximate (asymptotic) bound on the maximum angular error in */
/* the computed deflating subspaces is */
/* EPS * norm((A, B)) / RCONDV( 2 ). */
/* See LAPACK User's Guide, section 4.11 for more information. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Decode the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--alphar;
--alphai;
--beta;
vsl_dim1 = *ldvsl;
vsl_offset = 1 + vsl_dim1;
vsl -= vsl_offset;
vsr_dim1 = *ldvsr;
vsr_offset = 1 + vsr_dim1;
vsr -= vsr_offset;
--rconde;
--rcondv;
--work;
--iwork;
--bwork;
/* Function Body */
if (lsame_(jobvsl, "N")) {
ijobvl = 1;
ilvsl = FALSE_;
} else if (lsame_(jobvsl, "V")) {
ijobvl = 2;
ilvsl = TRUE_;
} else {
ijobvl = -1;
ilvsl = FALSE_;
}
if (lsame_(jobvsr, "N")) {
ijobvr = 1;
ilvsr = FALSE_;
} else if (lsame_(jobvsr, "V")) {
ijobvr = 2;
ilvsr = TRUE_;
} else {
ijobvr = -1;
ilvsr = FALSE_;
}
wantst = lsame_(sort, "S");
wantsn = lsame_(sense, "N");
wantse = lsame_(sense, "E");
wantsv = lsame_(sense, "V");
wantsb = lsame_(sense, "B");
lquery = *lwork == -1 || *liwork == -1;
if (wantsn) {
ijob = 0;
} else if (wantse) {
ijob = 1;
} else if (wantsv) {
ijob = 2;
} else if (wantsb) {
ijob = 4;
}
/* Test the input arguments */
*info = 0;
if (ijobvl <= 0) {
*info = -1;
} else if (ijobvr <= 0) {
*info = -2;
} else if (! wantst && ! lsame_(sort, "N")) {
*info = -3;
} else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
wantsn) {
*info = -5;
} else if (*n < 0) {
*info = -6;
} else if (*lda < max(1,*n)) {
*info = -8;
} else if (*ldb < max(1,*n)) {
*info = -10;
} else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
*info = -16;
} else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
*info = -18;
}
/* Compute workspace */
/* (Note: Comments in the code beginning "Workspace:" describe the */
/* minimal amount of workspace needed at that point in the code, */
/* as well as the preferred amount for good performance. */
/* NB refers to the optimal block size for the immediately */
/* following subroutine, as returned by ILAENV.) */
if (*info == 0) {
if (*n > 0) {
/* Computing MAX */
i__1 = *n << 3, i__2 = *n * 6 + 16;
minwrk = max(i__1,i__2);
maxwrk = minwrk - *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, &
c__1, n, &c__0);
/* Computing MAX */
i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SORMQR",
" ", n, &c__1, n, &c_n1);
maxwrk = max(i__1,i__2);
if (ilvsl) {
/* Computing MAX */
i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SOR"
"GQR", " ", n, &c__1, n, &c_n1);
maxwrk = max(i__1,i__2);
}
lwrk = maxwrk;
if (ijob >= 1) {
/* Computing MAX */
i__1 = lwrk, i__2 = *n * *n / 2;
lwrk = max(i__1,i__2);
}
} else {
minwrk = 1;
maxwrk = 1;
lwrk = 1;
}
work[1] = (real) lwrk;
if (wantsn || *n == 0) {
liwmin = 1;
} else {
liwmin = *n + 6;
}
iwork[1] = liwmin;
if (*lwork < minwrk && ! lquery) {
*info = -22;
} else if (*liwork < liwmin && ! lquery) {
*info = -24;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGGESX", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
*sdim = 0;
return 0;
}
/* Get machine constants */
eps = slamch_("P");
safmin = slamch_("S");
safmax = 1.f / safmin;
slabad_(&safmin, &safmax);
smlnum = sqrt(safmin) / eps;
bignum = 1.f / smlnum;
/* Scale A if max element outside range [SMLNUM,BIGNUM] */
anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
ilascl = FALSE_;
if (anrm > 0.f && anrm < smlnum) {
anrmto = smlnum;
ilascl = TRUE_;
} else if (anrm > bignum) {
anrmto = bignum;
ilascl = TRUE_;
}
if (ilascl) {
slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
ierr);
}
/* Scale B if max element outside range [SMLNUM,BIGNUM] */
bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
ilbscl = FALSE_;
if (bnrm > 0.f && bnrm < smlnum) {
bnrmto = smlnum;
ilbscl = TRUE_;
} else if (bnrm > bignum) {
bnrmto = bignum;
ilbscl = TRUE_;
}
if (ilbscl) {
slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
ierr);
}
/* Permute the matrix to make it more nearly triangular */
/* (Workspace: need 6*N + 2*N for permutation parameters) */
ileft = 1;
iright = *n + 1;
iwrk = iright + *n;
sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
ileft], &work[iright], &work[iwrk], &ierr);
/* Reduce B to triangular form (QR decomposition of B) */
/* (Workspace: need N, prefer N*NB) */
irows = ihi + 1 - ilo;
icols = *n + 1 - ilo;
itau = iwrk;
iwrk = itau + irows;
i__1 = *lwork + 1 - iwrk;
sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
iwrk], &i__1, &ierr);
/* Apply the orthogonal transformation to matrix A */
/* (Workspace: need N, prefer N*NB) */
i__1 = *lwork + 1 - iwrk;
sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
ierr);
/* Initialize VSL */
/* (Workspace: need N, prefer N*NB) */
if (ilvsl) {
slaset_("Full", n, n, &c_b42, &c_b43, &vsl[vsl_offset], ldvsl);
if (irows > 1) {
i__1 = irows - 1;
i__2 = irows - 1;
slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
ilo + 1 + ilo * vsl_dim1], ldvsl);
}
i__1 = *lwork + 1 - iwrk;
sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
work[itau], &work[iwrk], &i__1, &ierr);
}
/* Initialize VSR */
if (ilvsr) {
slaset_("Full", n, n, &c_b42, &c_b43, &vsr[vsr_offset], ldvsr);
}
/* Reduce to generalized Hessenberg form */
/* (Workspace: none needed) */
sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
*sdim = 0;
/* Perform QZ algorithm, computing Schur vectors if desired */
/* (Workspace: need N) */
iwrk = itau;
i__1 = *lwork + 1 - iwrk;
shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
, ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
if (ierr != 0) {
if (ierr > 0 && ierr <= *n) {
*info = ierr;
} else if (ierr > *n && ierr <= *n << 1) {
*info = ierr - *n;
} else {
*info = *n + 1;
}
goto L50;
}
/* Sort eigenvalues ALPHA/BETA and compute the reciprocal of */
/* condition number(s) */
/* (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) ) */
/* otherwise, need 8*(N+1) ) */
if (wantst) {
/* Undo scaling on eigenvalues before SELCTGing */
if (ilascl) {
slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1],
n, &ierr);
slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1],
n, &ierr);
}
if (ilbscl) {
slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n,
&ierr);
}
/* Select eigenvalues */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
/* L10: */
}
/* Reorder eigenvalues, transform Generalized Schur vectors, and */
/* compute reciprocal condition numbers */
i__1 = *lwork - iwrk + 1;
stgsen_(&ijob, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pl, &pr,
dif, &work[iwrk], &i__1, &iwork[1], liwork, &ierr);
if (ijob >= 1) {
/* Computing MAX */
i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
maxwrk = max(i__1,i__2);
}
if (ierr == -22) {
/* not enough real workspace */
*info = -22;
} else {
if (ijob == 1 || ijob == 4) {
rconde[1] = pl;
rconde[2] = pr;
}
if (ijob == 2 || ijob == 4) {
rcondv[1] = dif[0];
rcondv[2] = dif[1];
}
if (ierr == 1) {
*info = *n + 3;
}
}
}
/* Apply permutation to VSL and VSR */
/* (Workspace: none needed) */
if (ilvsl) {
sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
vsl_offset], ldvsl, &ierr);
}
if (ilvsr) {
sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
vsr_offset], ldvsr, &ierr);
}
/* Check if unscaling would cause over/underflow, if so, rescale */
/* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
/* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
if (ilascl) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (alphai[i__] != 0.f) {
if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[
i__] > anrm / anrmto) {
work[1] = (r__1 = a[i__ + i__ * a_dim1] / alphar[i__],
dabs(r__1));
beta[i__] *= work[1];
alphar[i__] *= work[1];
alphai[i__] *= work[1];
} else if (alphai[i__] / safmax > anrmto / anrm || safmin /
alphai[i__] > anrm / anrmto) {
work[1] = (r__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[
i__], dabs(r__1));
beta[i__] *= work[1];
alphar[i__] *= work[1];
alphai[i__] *= work[1];
}
}
/* L20: */
}
}
if (ilbscl) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (alphai[i__] != 0.f) {
if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__]
> bnrm / bnrmto) {
work[1] = (r__1 = b[i__ + i__ * b_dim1] / beta[i__], dabs(
r__1));
beta[i__] *= work[1];
alphar[i__] *= work[1];
alphai[i__] *= work[1];
}
}
/* L25: */
}
}
/* Undo scaling */
if (ilascl) {
slascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
ierr);
slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
ierr);
slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
ierr);
}
if (ilbscl) {
slascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
ierr);
slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
ierr);
}
if (wantst) {
/* Check if reordering is correct */
lastsl = TRUE_;
lst2sl = TRUE_;
*sdim = 0;
ip = 0;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
if (alphai[i__] == 0.f) {
if (cursl) {
++(*sdim);
}
ip = 0;
if (cursl && ! lastsl) {
*info = *n + 2;
}
} else {
if (ip == 1) {
/* Last eigenvalue of conjugate pair */
cursl = cursl || lastsl;
lastsl = cursl;
if (cursl) {
*sdim += 2;
}
ip = -1;
if (cursl && ! lst2sl) {
*info = *n + 2;
}
} else {
/* First eigenvalue of conjugate pair */
ip = 1;
}
}
lst2sl = lastsl;
lastsl = cursl;
/* L40: */
}
}
L50:
work[1] = (real) maxwrk;
iwork[1] = liwmin;
return 0;
/* End of SGGESX */
} /* sggesx_ */
|