1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
/* sgetc2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static real c_b10 = -1.f;
/* Subroutine */ int sgetc2_(integer *n, real *a, integer *lda, integer *ipiv,
integer *jpiv, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
real r__1;
/* Local variables */
integer i__, j, ip, jp;
real eps;
integer ipv, jpv;
extern /* Subroutine */ int sger_(integer *, integer *, real *, real *,
integer *, real *, integer *, real *, integer *);
real smin, xmax;
extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
integer *), slabad_(real *, real *);
extern doublereal slamch_(char *);
real bignum, smlnum;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SGETC2 computes an LU factorization with complete pivoting of the */
/* n-by-n matrix A. The factorization has the form A = P * L * U * Q, */
/* where P and Q are permutation matrices, L is lower triangular with */
/* unit diagonal elements and U is upper triangular. */
/* This is the Level 2 BLAS algorithm. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) REAL array, dimension (LDA, N) */
/* On entry, the n-by-n matrix A to be factored. */
/* On exit, the factors L and U from the factorization */
/* A = P*L*U*Q; the unit diagonal elements of L are not stored. */
/* If U(k, k) appears to be less than SMIN, U(k, k) is given the */
/* value of SMIN, i.e., giving a nonsingular perturbed system. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* IPIV (output) INTEGER array, dimension(N). */
/* The pivot indices; for 1 <= i <= N, row i of the */
/* matrix has been interchanged with row IPIV(i). */
/* JPIV (output) INTEGER array, dimension(N). */
/* The pivot indices; for 1 <= j <= N, column j of the */
/* matrix has been interchanged with column JPIV(j). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* > 0: if INFO = k, U(k, k) is likely to produce owerflow if */
/* we try to solve for x in Ax = b. So U is perturbed to */
/* avoid the overflow. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* Umea University, S-901 87 Umea, Sweden. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Set constants to control overflow */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipiv;
--jpiv;
/* Function Body */
*info = 0;
eps = slamch_("P");
smlnum = slamch_("S") / eps;
bignum = 1.f / smlnum;
slabad_(&smlnum, &bignum);
/* Factorize A using complete pivoting. */
/* Set pivots less than SMIN to SMIN. */
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Find max element in matrix A */
xmax = 0.f;
i__2 = *n;
for (ip = i__; ip <= i__2; ++ip) {
i__3 = *n;
for (jp = i__; jp <= i__3; ++jp) {
if ((r__1 = a[ip + jp * a_dim1], dabs(r__1)) >= xmax) {
xmax = (r__1 = a[ip + jp * a_dim1], dabs(r__1));
ipv = ip;
jpv = jp;
}
/* L10: */
}
/* L20: */
}
if (i__ == 1) {
/* Computing MAX */
r__1 = eps * xmax;
smin = dmax(r__1,smlnum);
}
/* Swap rows */
if (ipv != i__) {
sswap_(n, &a[ipv + a_dim1], lda, &a[i__ + a_dim1], lda);
}
ipiv[i__] = ipv;
/* Swap columns */
if (jpv != i__) {
sswap_(n, &a[jpv * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
c__1);
}
jpiv[i__] = jpv;
/* Check for singularity */
if ((r__1 = a[i__ + i__ * a_dim1], dabs(r__1)) < smin) {
*info = i__;
a[i__ + i__ * a_dim1] = smin;
}
i__2 = *n;
for (j = i__ + 1; j <= i__2; ++j) {
a[j + i__ * a_dim1] /= a[i__ + i__ * a_dim1];
/* L30: */
}
i__2 = *n - i__;
i__3 = *n - i__;
sger_(&i__2, &i__3, &c_b10, &a[i__ + 1 + i__ * a_dim1], &c__1, &a[i__
+ (i__ + 1) * a_dim1], lda, &a[i__ + 1 + (i__ + 1) * a_dim1],
lda);
/* L40: */
}
if ((r__1 = a[*n + *n * a_dim1], dabs(r__1)) < smin) {
*info = *n;
a[*n + *n * a_dim1] = smin;
}
return 0;
/* End of SGETC2 */
} /* sgetc2_ */
|