1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
/* sgeequ.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int sgeequ_(integer *m, integer *n, real *a, integer *lda,
real *r__, real *c__, real *rowcnd, real *colcnd, real *amax, integer
*info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
real r__1, r__2, r__3;
/* Local variables */
integer i__, j;
real rcmin, rcmax;
extern doublereal slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
real bignum, smlnum;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SGEEQU computes row and column scalings intended to equilibrate an */
/* M-by-N matrix A and reduce its condition number. R returns the row */
/* scale factors and C the column scale factors, chosen to try to make */
/* the largest element in each row and column of the matrix B with */
/* elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */
/* R(i) and C(j) are restricted to be between SMLNUM = smallest safe */
/* number and BIGNUM = largest safe number. Use of these scaling */
/* factors is not guaranteed to reduce the condition number of A but */
/* works well in practice. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* A (input) REAL array, dimension (LDA,N) */
/* The M-by-N matrix whose equilibration factors are */
/* to be computed. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* R (output) REAL array, dimension (M) */
/* If INFO = 0 or INFO > M, R contains the row scale factors */
/* for A. */
/* C (output) REAL array, dimension (N) */
/* If INFO = 0, C contains the column scale factors for A. */
/* ROWCND (output) REAL */
/* If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
/* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */
/* AMAX is neither too large nor too small, it is not worth */
/* scaling by R. */
/* COLCND (output) REAL */
/* If INFO = 0, COLCND contains the ratio of the smallest */
/* C(i) to the largest C(i). If COLCND >= 0.1, it is not */
/* worth scaling by C. */
/* AMAX (output) REAL */
/* Absolute value of largest matrix element. If AMAX is very */
/* close to overflow or very close to underflow, the matrix */
/* should be scaled. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, and i is */
/* <= M: the i-th row of A is exactly zero */
/* > M: the (i-M)-th column of A is exactly zero */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--r__;
--c__;
/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGEEQU", &i__1);
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0) {
*rowcnd = 1.f;
*colcnd = 1.f;
*amax = 0.f;
return 0;
}
/* Get machine constants. */
smlnum = slamch_("S");
bignum = 1.f / smlnum;
/* Compute row scale factors. */
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
r__[i__] = 0.f;
/* L10: */
}
/* Find the maximum element in each row. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
r__2 = r__[i__], r__3 = (r__1 = a[i__ + j * a_dim1], dabs(r__1));
r__[i__] = dmax(r__2,r__3);
/* L20: */
}
/* L30: */
}
/* Find the maximum and minimum scale factors. */
rcmin = bignum;
rcmax = 0.f;
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
r__1 = rcmax, r__2 = r__[i__];
rcmax = dmax(r__1,r__2);
/* Computing MIN */
r__1 = rcmin, r__2 = r__[i__];
rcmin = dmin(r__1,r__2);
/* L40: */
}
*amax = rcmax;
if (rcmin == 0.f) {
/* Find the first zero scale factor and return an error code. */
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
if (r__[i__] == 0.f) {
*info = i__;
return 0;
}
/* L50: */
}
} else {
/* Invert the scale factors. */
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MIN */
/* Computing MAX */
r__2 = r__[i__];
r__1 = dmax(r__2,smlnum);
r__[i__] = 1.f / dmin(r__1,bignum);
/* L60: */
}
/* Compute ROWCND = min(R(I)) / max(R(I)) */
*rowcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum);
}
/* Compute column scale factors */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
c__[j] = 0.f;
/* L70: */
}
/* Find the maximum element in each column, */
/* assuming the row scaling computed above. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
r__2 = c__[j], r__3 = (r__1 = a[i__ + j * a_dim1], dabs(r__1)) *
r__[i__];
c__[j] = dmax(r__2,r__3);
/* L80: */
}
/* L90: */
}
/* Find the maximum and minimum scale factors. */
rcmin = bignum;
rcmax = 0.f;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
r__1 = rcmin, r__2 = c__[j];
rcmin = dmin(r__1,r__2);
/* Computing MAX */
r__1 = rcmax, r__2 = c__[j];
rcmax = dmax(r__1,r__2);
/* L100: */
}
if (rcmin == 0.f) {
/* Find the first zero scale factor and return an error code. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (c__[j] == 0.f) {
*info = *m + j;
return 0;
}
/* L110: */
}
} else {
/* Invert the scale factors. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
/* Computing MAX */
r__2 = c__[j];
r__1 = dmax(r__2,smlnum);
c__[j] = 1.f / dmin(r__1,bignum);
/* L120: */
}
/* Compute COLCND = min(C(J)) / max(C(J)) */
*colcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum);
}
return 0;
/* End of SGEEQU */
} /* sgeequ_ */
|