aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/sgbtrs.c
blob: b99d3d2ddd06f414665f227e2f1c28869820a14e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/* sgbtrs.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static real c_b7 = -1.f;
static integer c__1 = 1;
static real c_b23 = 1.f;

/* Subroutine */ int sgbtrs_(char *trans, integer *n, integer *kl, integer *
	ku, integer *nrhs, real *ab, integer *ldab, integer *ipiv, real *b, 
	integer *ldb, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, b_dim1, b_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, j, l, kd, lm;
    extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, 
	    integer *, real *, integer *, real *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *, integer *);
    logical lnoti;
    extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, 
	    integer *), stbsv_(char *, char *, char *, integer *, integer *, 
	    real *, integer *, real *, integer *), 
	    xerbla_(char *, integer *);
    logical notran;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SGBTRS solves a system of linear equations */
/*     A * X = B  or  A' * X = B */
/*  with a general band matrix A using the LU factorization computed */
/*  by SGBTRF. */

/*  Arguments */
/*  ========= */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the form of the system of equations. */
/*          = 'N':  A * X = B  (No transpose) */
/*          = 'T':  A'* X = B  (Transpose) */
/*          = 'C':  A'* X = B  (Conjugate transpose = Transpose) */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KL      (input) INTEGER */
/*          The number of subdiagonals within the band of A.  KL >= 0. */

/*  KU      (input) INTEGER */
/*          The number of superdiagonals within the band of A.  KU >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  AB      (input) REAL array, dimension (LDAB,N) */
/*          Details of the LU factorization of the band matrix A, as */
/*          computed by SGBTRF.  U is stored as an upper triangular band */
/*          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
/*          the multipliers used during the factorization are stored in */
/*          rows KL+KU+2 to 2*KL+KU+1. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. */

/*  IPIV    (input) INTEGER array, dimension (N) */
/*          The pivot indices; for 1 <= i <= N, row i of the matrix was */
/*          interchanged with row IPIV(i). */

/*  B       (input/output) REAL array, dimension (LDB,NRHS) */
/*          On entry, the right hand side matrix B. */
/*          On exit, the solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    notran = lsame_(trans, "N");
    if (! notran && ! lsame_(trans, "T") && ! lsame_(
	    trans, "C")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kl < 0) {
	*info = -3;
    } else if (*ku < 0) {
	*info = -4;
    } else if (*nrhs < 0) {
	*info = -5;
    } else if (*ldab < (*kl << 1) + *ku + 1) {
	*info = -7;
    } else if (*ldb < max(1,*n)) {
	*info = -10;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SGBTRS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

    kd = *ku + *kl + 1;
    lnoti = *kl > 0;

    if (notran) {

/*        Solve  A*X = B. */

/*        Solve L*X = B, overwriting B with X. */

/*        L is represented as a product of permutations and unit lower */
/*        triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1), */
/*        where each transformation L(i) is a rank-one modification of */
/*        the identity matrix. */

	if (lnoti) {
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		i__2 = *kl, i__3 = *n - j;
		lm = min(i__2,i__3);
		l = ipiv[j];
		if (l != j) {
		    sswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);
		}
		sger_(&lm, nrhs, &c_b7, &ab[kd + 1 + j * ab_dim1], &c__1, &b[
			j + b_dim1], ldb, &b[j + 1 + b_dim1], ldb);
/* L10: */
	    }
	}

	i__1 = *nrhs;
	for (i__ = 1; i__ <= i__1; ++i__) {

/*           Solve U*X = B, overwriting B with X. */

	    i__2 = *kl + *ku;
	    stbsv_("Upper", "No transpose", "Non-unit", n, &i__2, &ab[
		    ab_offset], ldab, &b[i__ * b_dim1 + 1], &c__1);
/* L20: */
	}

    } else {

/*        Solve A'*X = B. */

	i__1 = *nrhs;
	for (i__ = 1; i__ <= i__1; ++i__) {

/*           Solve U'*X = B, overwriting B with X. */

	    i__2 = *kl + *ku;
	    stbsv_("Upper", "Transpose", "Non-unit", n, &i__2, &ab[ab_offset], 
		     ldab, &b[i__ * b_dim1 + 1], &c__1);
/* L30: */
	}

/*        Solve L'*X = B, overwriting B with X. */

	if (lnoti) {
	    for (j = *n - 1; j >= 1; --j) {
/* Computing MIN */
		i__1 = *kl, i__2 = *n - j;
		lm = min(i__1,i__2);
		sgemv_("Transpose", &lm, nrhs, &c_b7, &b[j + 1 + b_dim1], ldb, 
			 &ab[kd + 1 + j * ab_dim1], &c__1, &c_b23, &b[j + 
			b_dim1], ldb);
		l = ipiv[j];
		if (l != j) {
		    sswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);
		}
/* L40: */
	    }
	}
    }
    return 0;

/*     End of SGBTRS */

} /* sgbtrs_ */