1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/* sgbcon.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int sgbcon_(char *norm, integer *n, integer *kl, integer *ku,
real *ab, integer *ldab, integer *ipiv, real *anorm, real *rcond,
real *work, integer *iwork, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, i__1, i__2, i__3;
real r__1;
/* Local variables */
integer j;
real t;
integer kd, lm, jp, ix, kase;
extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
integer kase1;
real scale;
extern logical lsame_(char *, char *);
integer isave[3];
logical lnoti;
extern /* Subroutine */ int srscl_(integer *, real *, real *, integer *),
saxpy_(integer *, real *, real *, integer *, real *, integer *),
slacn2_(integer *, real *, real *, integer *, real *, integer *,
integer *);
extern doublereal slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
extern integer isamax_(integer *, real *, integer *);
real ainvnm;
extern /* Subroutine */ int slatbs_(char *, char *, char *, char *,
integer *, integer *, real *, integer *, real *, real *, real *,
integer *);
logical onenrm;
char normin[1];
real smlnum;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SGBCON estimates the reciprocal of the condition number of a real */
/* general band matrix A, in either the 1-norm or the infinity-norm, */
/* using the LU factorization computed by SGBTRF. */
/* An estimate is obtained for norm(inv(A)), and the reciprocal of the */
/* condition number is computed as */
/* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */
/* Arguments */
/* ========= */
/* NORM (input) CHARACTER*1 */
/* Specifies whether the 1-norm condition number or the */
/* infinity-norm condition number is required: */
/* = '1' or 'O': 1-norm; */
/* = 'I': Infinity-norm. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* KL (input) INTEGER */
/* The number of subdiagonals within the band of A. KL >= 0. */
/* KU (input) INTEGER */
/* The number of superdiagonals within the band of A. KU >= 0. */
/* AB (input) REAL array, dimension (LDAB,N) */
/* Details of the LU factorization of the band matrix A, as */
/* computed by SGBTRF. U is stored as an upper triangular band */
/* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
/* the multipliers used during the factorization are stored in */
/* rows KL+KU+2 to 2*KL+KU+1. */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */
/* IPIV (input) INTEGER array, dimension (N) */
/* The pivot indices; for 1 <= i <= N, row i of the matrix was */
/* interchanged with row IPIV(i). */
/* ANORM (input) REAL */
/* If NORM = '1' or 'O', the 1-norm of the original matrix A. */
/* If NORM = 'I', the infinity-norm of the original matrix A. */
/* RCOND (output) REAL */
/* The reciprocal of the condition number of the matrix A, */
/* computed as RCOND = 1/(norm(A) * norm(inv(A))). */
/* WORK (workspace) REAL array, dimension (3*N) */
/* IWORK (workspace) INTEGER array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
--ipiv;
--work;
--iwork;
/* Function Body */
*info = 0;
onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
if (! onenrm && ! lsame_(norm, "I")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*kl < 0) {
*info = -3;
} else if (*ku < 0) {
*info = -4;
} else if (*ldab < (*kl << 1) + *ku + 1) {
*info = -6;
} else if (*anorm < 0.f) {
*info = -8;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGBCON", &i__1);
return 0;
}
/* Quick return if possible */
*rcond = 0.f;
if (*n == 0) {
*rcond = 1.f;
return 0;
} else if (*anorm == 0.f) {
return 0;
}
smlnum = slamch_("Safe minimum");
/* Estimate the norm of inv(A). */
ainvnm = 0.f;
*(unsigned char *)normin = 'N';
if (onenrm) {
kase1 = 1;
} else {
kase1 = 2;
}
kd = *kl + *ku + 1;
lnoti = *kl > 0;
kase = 0;
L10:
slacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
if (kase != 0) {
if (kase == kase1) {
/* Multiply by inv(L). */
if (lnoti) {
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__2 = *kl, i__3 = *n - j;
lm = min(i__2,i__3);
jp = ipiv[j];
t = work[jp];
if (jp != j) {
work[jp] = work[j];
work[j] = t;
}
r__1 = -t;
saxpy_(&lm, &r__1, &ab[kd + 1 + j * ab_dim1], &c__1, &
work[j + 1], &c__1);
/* L20: */
}
}
/* Multiply by inv(U). */
i__1 = *kl + *ku;
slatbs_("Upper", "No transpose", "Non-unit", normin, n, &i__1, &
ab[ab_offset], ldab, &work[1], &scale, &work[(*n << 1) +
1], info);
} else {
/* Multiply by inv(U'). */
i__1 = *kl + *ku;
slatbs_("Upper", "Transpose", "Non-unit", normin, n, &i__1, &ab[
ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 1],
info);
/* Multiply by inv(L'). */
if (lnoti) {
for (j = *n - 1; j >= 1; --j) {
/* Computing MIN */
i__1 = *kl, i__2 = *n - j;
lm = min(i__1,i__2);
work[j] -= sdot_(&lm, &ab[kd + 1 + j * ab_dim1], &c__1, &
work[j + 1], &c__1);
jp = ipiv[j];
if (jp != j) {
t = work[jp];
work[jp] = work[j];
work[j] = t;
}
/* L30: */
}
}
}
/* Divide X by 1/SCALE if doing so will not cause overflow. */
*(unsigned char *)normin = 'Y';
if (scale != 1.f) {
ix = isamax_(n, &work[1], &c__1);
if (scale < (r__1 = work[ix], dabs(r__1)) * smlnum || scale ==
0.f) {
goto L40;
}
srscl_(n, &scale, &work[1], &c__1);
}
goto L10;
}
/* Compute the estimate of the reciprocal condition number. */
if (ainvnm != 0.f) {
*rcond = 1.f / ainvnm / *anorm;
}
L40:
return 0;
/* End of SGBCON */
} /* sgbcon_ */
|