1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
|
/* dtgsja.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static doublereal c_b13 = 0.;
static doublereal c_b14 = 1.;
static integer c__1 = 1;
static doublereal c_b43 = -1.;
/* Subroutine */ int dtgsja_(char *jobu, char *jobv, char *jobq, integer *m,
integer *p, integer *n, integer *k, integer *l, doublereal *a,
integer *lda, doublereal *b, integer *ldb, doublereal *tola,
doublereal *tolb, doublereal *alpha, doublereal *beta, doublereal *u,
integer *ldu, doublereal *v, integer *ldv, doublereal *q, integer *
ldq, doublereal *work, integer *ncycle, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
u_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4;
doublereal d__1;
/* Local variables */
integer i__, j;
doublereal a1, a2, a3, b1, b2, b3, csq, csu, csv, snq, rwk, snu, snv;
extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *);
doublereal gamma;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
logical initq, initu, initv, wantq, upper;
doublereal error, ssmin;
logical wantu, wantv;
extern /* Subroutine */ int dlags2_(logical *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *), dlapll_(integer *, doublereal *,
integer *, doublereal *, integer *, doublereal *);
integer kcycle;
extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *), dlaset_(char *,
integer *, integer *, doublereal *, doublereal *, doublereal *,
integer *), xerbla_(char *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DTGSJA computes the generalized singular value decomposition (GSVD) */
/* of two real upper triangular (or trapezoidal) matrices A and B. */
/* On entry, it is assumed that matrices A and B have the following */
/* forms, which may be obtained by the preprocessing subroutine DGGSVP */
/* from a general M-by-N matrix A and P-by-N matrix B: */
/* N-K-L K L */
/* A = K ( 0 A12 A13 ) if M-K-L >= 0; */
/* L ( 0 0 A23 ) */
/* M-K-L ( 0 0 0 ) */
/* N-K-L K L */
/* A = K ( 0 A12 A13 ) if M-K-L < 0; */
/* M-K ( 0 0 A23 ) */
/* N-K-L K L */
/* B = L ( 0 0 B13 ) */
/* P-L ( 0 0 0 ) */
/* where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
/* upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
/* otherwise A23 is (M-K)-by-L upper trapezoidal. */
/* On exit, */
/* U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ), */
/* where U, V and Q are orthogonal matrices, Z' denotes the transpose */
/* of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are */
/* ``diagonal'' matrices, which are of the following structures: */
/* If M-K-L >= 0, */
/* K L */
/* D1 = K ( I 0 ) */
/* L ( 0 C ) */
/* M-K-L ( 0 0 ) */
/* K L */
/* D2 = L ( 0 S ) */
/* P-L ( 0 0 ) */
/* N-K-L K L */
/* ( 0 R ) = K ( 0 R11 R12 ) K */
/* L ( 0 0 R22 ) L */
/* where */
/* C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
/* S = diag( BETA(K+1), ... , BETA(K+L) ), */
/* C**2 + S**2 = I. */
/* R is stored in A(1:K+L,N-K-L+1:N) on exit. */
/* If M-K-L < 0, */
/* K M-K K+L-M */
/* D1 = K ( I 0 0 ) */
/* M-K ( 0 C 0 ) */
/* K M-K K+L-M */
/* D2 = M-K ( 0 S 0 ) */
/* K+L-M ( 0 0 I ) */
/* P-L ( 0 0 0 ) */
/* N-K-L K M-K K+L-M */
/* ( 0 R ) = K ( 0 R11 R12 R13 ) */
/* M-K ( 0 0 R22 R23 ) */
/* K+L-M ( 0 0 0 R33 ) */
/* where */
/* C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
/* S = diag( BETA(K+1), ... , BETA(M) ), */
/* C**2 + S**2 = I. */
/* R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored */
/* ( 0 R22 R23 ) */
/* in B(M-K+1:L,N+M-K-L+1:N) on exit. */
/* The computation of the orthogonal transformation matrices U, V or Q */
/* is optional. These matrices may either be formed explicitly, or they */
/* may be postmultiplied into input matrices U1, V1, or Q1. */
/* Arguments */
/* ========= */
/* JOBU (input) CHARACTER*1 */
/* = 'U': U must contain an orthogonal matrix U1 on entry, and */
/* the product U1*U is returned; */
/* = 'I': U is initialized to the unit matrix, and the */
/* orthogonal matrix U is returned; */
/* = 'N': U is not computed. */
/* JOBV (input) CHARACTER*1 */
/* = 'V': V must contain an orthogonal matrix V1 on entry, and */
/* the product V1*V is returned; */
/* = 'I': V is initialized to the unit matrix, and the */
/* orthogonal matrix V is returned; */
/* = 'N': V is not computed. */
/* JOBQ (input) CHARACTER*1 */
/* = 'Q': Q must contain an orthogonal matrix Q1 on entry, and */
/* the product Q1*Q is returned; */
/* = 'I': Q is initialized to the unit matrix, and the */
/* orthogonal matrix Q is returned; */
/* = 'N': Q is not computed. */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* P (input) INTEGER */
/* The number of rows of the matrix B. P >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrices A and B. N >= 0. */
/* K (input) INTEGER */
/* L (input) INTEGER */
/* K and L specify the subblocks in the input matrices A and B: */
/* A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N) */
/* of A and B, whose GSVD is going to be computed by DTGSJA. */
/* See Further details. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the M-by-N matrix A. */
/* On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular */
/* matrix R or part of R. See Purpose for details. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* B (input/output) DOUBLE PRECISION array, dimension (LDB,N) */
/* On entry, the P-by-N matrix B. */
/* On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains */
/* a part of R. See Purpose for details. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,P). */
/* TOLA (input) DOUBLE PRECISION */
/* TOLB (input) DOUBLE PRECISION */
/* TOLA and TOLB are the convergence criteria for the Jacobi- */
/* Kogbetliantz iteration procedure. Generally, they are the */
/* same as used in the preprocessing step, say */
/* TOLA = max(M,N)*norm(A)*MAZHEPS, */
/* TOLB = max(P,N)*norm(B)*MAZHEPS. */
/* ALPHA (output) DOUBLE PRECISION array, dimension (N) */
/* BETA (output) DOUBLE PRECISION array, dimension (N) */
/* On exit, ALPHA and BETA contain the generalized singular */
/* value pairs of A and B; */
/* ALPHA(1:K) = 1, */
/* BETA(1:K) = 0, */
/* and if M-K-L >= 0, */
/* ALPHA(K+1:K+L) = diag(C), */
/* BETA(K+1:K+L) = diag(S), */
/* or if M-K-L < 0, */
/* ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0 */
/* BETA(K+1:M) = S, BETA(M+1:K+L) = 1. */
/* Furthermore, if K+L < N, */
/* ALPHA(K+L+1:N) = 0 and */
/* BETA(K+L+1:N) = 0. */
/* U (input/output) DOUBLE PRECISION array, dimension (LDU,M) */
/* On entry, if JOBU = 'U', U must contain a matrix U1 (usually */
/* the orthogonal matrix returned by DGGSVP). */
/* On exit, */
/* if JOBU = 'I', U contains the orthogonal matrix U; */
/* if JOBU = 'U', U contains the product U1*U. */
/* If JOBU = 'N', U is not referenced. */
/* LDU (input) INTEGER */
/* The leading dimension of the array U. LDU >= max(1,M) if */
/* JOBU = 'U'; LDU >= 1 otherwise. */
/* V (input/output) DOUBLE PRECISION array, dimension (LDV,P) */
/* On entry, if JOBV = 'V', V must contain a matrix V1 (usually */
/* the orthogonal matrix returned by DGGSVP). */
/* On exit, */
/* if JOBV = 'I', V contains the orthogonal matrix V; */
/* if JOBV = 'V', V contains the product V1*V. */
/* If JOBV = 'N', V is not referenced. */
/* LDV (input) INTEGER */
/* The leading dimension of the array V. LDV >= max(1,P) if */
/* JOBV = 'V'; LDV >= 1 otherwise. */
/* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
/* On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually */
/* the orthogonal matrix returned by DGGSVP). */
/* On exit, */
/* if JOBQ = 'I', Q contains the orthogonal matrix Q; */
/* if JOBQ = 'Q', Q contains the product Q1*Q. */
/* If JOBQ = 'N', Q is not referenced. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. LDQ >= max(1,N) if */
/* JOBQ = 'Q'; LDQ >= 1 otherwise. */
/* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
/* NCYCLE (output) INTEGER */
/* The number of cycles required for convergence. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* = 1: the procedure does not converge after MAXIT cycles. */
/* Internal Parameters */
/* =================== */
/* MAXIT INTEGER */
/* MAXIT specifies the total loops that the iterative procedure */
/* may take. If after MAXIT cycles, the routine fails to */
/* converge, we return INFO = 1. */
/* Further Details */
/* =============== */
/* DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce */
/* min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L */
/* matrix B13 to the form: */
/* U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1, */
/* where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose */
/* of Z. C1 and S1 are diagonal matrices satisfying */
/* C1**2 + S1**2 = I, */
/* and R1 is an L-by-L nonsingular upper triangular matrix. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Decode and test the input parameters */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--alpha;
--beta;
u_dim1 = *ldu;
u_offset = 1 + u_dim1;
u -= u_offset;
v_dim1 = *ldv;
v_offset = 1 + v_dim1;
v -= v_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
--work;
/* Function Body */
initu = lsame_(jobu, "I");
wantu = initu || lsame_(jobu, "U");
initv = lsame_(jobv, "I");
wantv = initv || lsame_(jobv, "V");
initq = lsame_(jobq, "I");
wantq = initq || lsame_(jobq, "Q");
*info = 0;
if (! (initu || wantu || lsame_(jobu, "N"))) {
*info = -1;
} else if (! (initv || wantv || lsame_(jobv, "N")))
{
*info = -2;
} else if (! (initq || wantq || lsame_(jobq, "N")))
{
*info = -3;
} else if (*m < 0) {
*info = -4;
} else if (*p < 0) {
*info = -5;
} else if (*n < 0) {
*info = -6;
} else if (*lda < max(1,*m)) {
*info = -10;
} else if (*ldb < max(1,*p)) {
*info = -12;
} else if (*ldu < 1 || wantu && *ldu < *m) {
*info = -18;
} else if (*ldv < 1 || wantv && *ldv < *p) {
*info = -20;
} else if (*ldq < 1 || wantq && *ldq < *n) {
*info = -22;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DTGSJA", &i__1);
return 0;
}
/* Initialize U, V and Q, if necessary */
if (initu) {
dlaset_("Full", m, m, &c_b13, &c_b14, &u[u_offset], ldu);
}
if (initv) {
dlaset_("Full", p, p, &c_b13, &c_b14, &v[v_offset], ldv);
}
if (initq) {
dlaset_("Full", n, n, &c_b13, &c_b14, &q[q_offset], ldq);
}
/* Loop until convergence */
upper = FALSE_;
for (kcycle = 1; kcycle <= 40; ++kcycle) {
upper = ! upper;
i__1 = *l - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *l;
for (j = i__ + 1; j <= i__2; ++j) {
a1 = 0.;
a2 = 0.;
a3 = 0.;
if (*k + i__ <= *m) {
a1 = a[*k + i__ + (*n - *l + i__) * a_dim1];
}
if (*k + j <= *m) {
a3 = a[*k + j + (*n - *l + j) * a_dim1];
}
b1 = b[i__ + (*n - *l + i__) * b_dim1];
b3 = b[j + (*n - *l + j) * b_dim1];
if (upper) {
if (*k + i__ <= *m) {
a2 = a[*k + i__ + (*n - *l + j) * a_dim1];
}
b2 = b[i__ + (*n - *l + j) * b_dim1];
} else {
if (*k + j <= *m) {
a2 = a[*k + j + (*n - *l + i__) * a_dim1];
}
b2 = b[j + (*n - *l + i__) * b_dim1];
}
dlags2_(&upper, &a1, &a2, &a3, &b1, &b2, &b3, &csu, &snu, &
csv, &snv, &csq, &snq);
/* Update (K+I)-th and (K+J)-th rows of matrix A: U'*A */
if (*k + j <= *m) {
drot_(l, &a[*k + j + (*n - *l + 1) * a_dim1], lda, &a[*k
+ i__ + (*n - *l + 1) * a_dim1], lda, &csu, &snu);
}
/* Update I-th and J-th rows of matrix B: V'*B */
drot_(l, &b[j + (*n - *l + 1) * b_dim1], ldb, &b[i__ + (*n - *
l + 1) * b_dim1], ldb, &csv, &snv);
/* Update (N-L+I)-th and (N-L+J)-th columns of matrices */
/* A and B: A*Q and B*Q */
/* Computing MIN */
i__4 = *k + *l;
i__3 = min(i__4,*m);
drot_(&i__3, &a[(*n - *l + j) * a_dim1 + 1], &c__1, &a[(*n - *
l + i__) * a_dim1 + 1], &c__1, &csq, &snq);
drot_(l, &b[(*n - *l + j) * b_dim1 + 1], &c__1, &b[(*n - *l +
i__) * b_dim1 + 1], &c__1, &csq, &snq);
if (upper) {
if (*k + i__ <= *m) {
a[*k + i__ + (*n - *l + j) * a_dim1] = 0.;
}
b[i__ + (*n - *l + j) * b_dim1] = 0.;
} else {
if (*k + j <= *m) {
a[*k + j + (*n - *l + i__) * a_dim1] = 0.;
}
b[j + (*n - *l + i__) * b_dim1] = 0.;
}
/* Update orthogonal matrices U, V, Q, if desired. */
if (wantu && *k + j <= *m) {
drot_(m, &u[(*k + j) * u_dim1 + 1], &c__1, &u[(*k + i__) *
u_dim1 + 1], &c__1, &csu, &snu);
}
if (wantv) {
drot_(p, &v[j * v_dim1 + 1], &c__1, &v[i__ * v_dim1 + 1],
&c__1, &csv, &snv);
}
if (wantq) {
drot_(n, &q[(*n - *l + j) * q_dim1 + 1], &c__1, &q[(*n - *
l + i__) * q_dim1 + 1], &c__1, &csq, &snq);
}
/* L10: */
}
/* L20: */
}
if (! upper) {
/* The matrices A13 and B13 were lower triangular at the start */
/* of the cycle, and are now upper triangular. */
/* Convergence test: test the parallelism of the corresponding */
/* rows of A and B. */
error = 0.;
/* Computing MIN */
i__2 = *l, i__3 = *m - *k;
i__1 = min(i__2,i__3);
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *l - i__ + 1;
dcopy_(&i__2, &a[*k + i__ + (*n - *l + i__) * a_dim1], lda, &
work[1], &c__1);
i__2 = *l - i__ + 1;
dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &work[*
l + 1], &c__1);
i__2 = *l - i__ + 1;
dlapll_(&i__2, &work[1], &c__1, &work[*l + 1], &c__1, &ssmin);
error = max(error,ssmin);
/* L30: */
}
if (abs(error) <= min(*tola,*tolb)) {
goto L50;
}
}
/* End of cycle loop */
/* L40: */
}
/* The algorithm has not converged after MAXIT cycles. */
*info = 1;
goto L100;
L50:
/* If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged. */
/* Compute the generalized singular value pairs (ALPHA, BETA), and */
/* set the triangular matrix R to array A. */
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
alpha[i__] = 1.;
beta[i__] = 0.;
/* L60: */
}
/* Computing MIN */
i__2 = *l, i__3 = *m - *k;
i__1 = min(i__2,i__3);
for (i__ = 1; i__ <= i__1; ++i__) {
a1 = a[*k + i__ + (*n - *l + i__) * a_dim1];
b1 = b[i__ + (*n - *l + i__) * b_dim1];
if (a1 != 0.) {
gamma = b1 / a1;
/* change sign if necessary */
if (gamma < 0.) {
i__2 = *l - i__ + 1;
dscal_(&i__2, &c_b43, &b[i__ + (*n - *l + i__) * b_dim1], ldb)
;
if (wantv) {
dscal_(p, &c_b43, &v[i__ * v_dim1 + 1], &c__1);
}
}
d__1 = abs(gamma);
dlartg_(&d__1, &c_b14, &beta[*k + i__], &alpha[*k + i__], &rwk);
if (alpha[*k + i__] >= beta[*k + i__]) {
i__2 = *l - i__ + 1;
d__1 = 1. / alpha[*k + i__];
dscal_(&i__2, &d__1, &a[*k + i__ + (*n - *l + i__) * a_dim1],
lda);
} else {
i__2 = *l - i__ + 1;
d__1 = 1. / beta[*k + i__];
dscal_(&i__2, &d__1, &b[i__ + (*n - *l + i__) * b_dim1], ldb);
i__2 = *l - i__ + 1;
dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &a[*k
+ i__ + (*n - *l + i__) * a_dim1], lda);
}
} else {
alpha[*k + i__] = 0.;
beta[*k + i__] = 1.;
i__2 = *l - i__ + 1;
dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &a[*k +
i__ + (*n - *l + i__) * a_dim1], lda);
}
/* L70: */
}
/* Post-assignment */
i__1 = *k + *l;
for (i__ = *m + 1; i__ <= i__1; ++i__) {
alpha[i__] = 0.;
beta[i__] = 1.;
/* L80: */
}
if (*k + *l < *n) {
i__1 = *n;
for (i__ = *k + *l + 1; i__ <= i__1; ++i__) {
alpha[i__] = 0.;
beta[i__] = 0.;
/* L90: */
}
}
L100:
*ncycle = kcycle;
return 0;
/* End of DTGSJA */
} /* dtgsja_ */
|