1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
/* dstev.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int dstev_(char *jobz, integer *n, doublereal *d__,
doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1;
doublereal d__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
doublereal eps;
integer imax;
doublereal rmin, rmax, tnrm;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
doublereal sigma;
extern logical lsame_(char *, char *);
logical wantz;
extern doublereal dlamch_(char *);
integer iscale;
doublereal safmin;
extern /* Subroutine */ int xerbla_(char *, integer *);
doublereal bignum;
extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
integer *), dsteqr_(char *, integer *, doublereal *, doublereal *
, doublereal *, integer *, doublereal *, integer *);
doublereal smlnum;
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DSTEV computes all eigenvalues and, optionally, eigenvectors of a */
/* real symmetric tridiagonal matrix A. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* N (input) INTEGER */
/* The order of the matrix. N >= 0. */
/* D (input/output) DOUBLE PRECISION array, dimension (N) */
/* On entry, the n diagonal elements of the tridiagonal matrix */
/* A. */
/* On exit, if INFO = 0, the eigenvalues in ascending order. */
/* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
/* On entry, the (n-1) subdiagonal elements of the tridiagonal */
/* matrix A, stored in elements 1 to N-1 of E. */
/* On exit, the contents of E are destroyed. */
/* Z (output) DOUBLE PRECISION array, dimension (LDZ, N) */
/* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/* eigenvectors of the matrix A, with the i-th column of Z */
/* holding the eigenvector associated with D(i). */
/* If JOBZ = 'N', then Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= max(1,N). */
/* WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2)) */
/* If JOBZ = 'N', WORK is not referenced. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, the algorithm failed to converge; i */
/* off-diagonal elements of E did not converge to zero. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
/* Function Body */
wantz = lsame_(jobz, "V");
*info = 0;
if (! (wantz || lsame_(jobz, "N"))) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*ldz < 1 || wantz && *ldz < *n) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DSTEV ", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (wantz) {
z__[z_dim1 + 1] = 1.;
}
return 0;
}
/* Get machine constants. */
safmin = dlamch_("Safe minimum");
eps = dlamch_("Precision");
smlnum = safmin / eps;
bignum = 1. / smlnum;
rmin = sqrt(smlnum);
rmax = sqrt(bignum);
/* Scale matrix to allowable range, if necessary. */
iscale = 0;
tnrm = dlanst_("M", n, &d__[1], &e[1]);
if (tnrm > 0. && tnrm < rmin) {
iscale = 1;
sigma = rmin / tnrm;
} else if (tnrm > rmax) {
iscale = 1;
sigma = rmax / tnrm;
}
if (iscale == 1) {
dscal_(n, &sigma, &d__[1], &c__1);
i__1 = *n - 1;
dscal_(&i__1, &sigma, &e[1], &c__1);
}
/* For eigenvalues only, call DSTERF. For eigenvalues and */
/* eigenvectors, call DSTEQR. */
if (! wantz) {
dsterf_(n, &d__[1], &e[1], info);
} else {
dsteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
if (iscale == 1) {
if (*info == 0) {
imax = *n;
} else {
imax = *info - 1;
}
d__1 = 1. / sigma;
dscal_(&imax, &d__1, &d__[1], &c__1);
}
return 0;
/* End of DSTEV */
} /* dstev_ */
|