1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
/* dsprfs.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b12 = -1.;
static doublereal c_b14 = 1.;
/* Subroutine */ int dsprfs_(char *uplo, integer *n, integer *nrhs,
doublereal *ap, doublereal *afp, integer *ipiv, doublereal *b,
integer *ldb, doublereal *x, integer *ldx, doublereal *ferr,
doublereal *berr, doublereal *work, integer *iwork, integer *info)
{
/* System generated locals */
integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3;
doublereal d__1, d__2, d__3;
/* Local variables */
integer i__, j, k;
doublereal s;
integer ik, kk;
doublereal xk;
integer nz;
doublereal eps;
integer kase;
doublereal safe1, safe2;
extern logical lsame_(char *, char *);
integer isave[3];
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *), daxpy_(integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *);
integer count;
extern /* Subroutine */ int dspmv_(char *, integer *, doublereal *,
doublereal *, doublereal *, integer *, doublereal *, doublereal *,
integer *);
logical upper;
extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *);
extern doublereal dlamch_(char *);
doublereal safmin;
extern /* Subroutine */ int xerbla_(char *, integer *);
doublereal lstres;
extern /* Subroutine */ int dsptrs_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DSPRFS improves the computed solution to a system of linear */
/* equations when the coefficient matrix is symmetric indefinite */
/* and packed, and provides error bounds and backward error estimates */
/* for the solution. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrices B and X. NRHS >= 0. */
/* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/* The upper or lower triangle of the symmetric matrix A, packed */
/* columnwise in a linear array. The j-th column of A is stored */
/* in the array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
/* AFP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/* The factored form of the matrix A. AFP contains the block */
/* diagonal matrix D and the multipliers used to obtain the */
/* factor U or L from the factorization A = U*D*U**T or */
/* A = L*D*L**T as computed by DSPTRF, stored as a packed */
/* triangular matrix. */
/* IPIV (input) INTEGER array, dimension (N) */
/* Details of the interchanges and the block structure of D */
/* as determined by DSPTRF. */
/* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/* The right hand side matrix B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
/* On entry, the solution matrix X, as computed by DSPTRS. */
/* On exit, the improved solution matrix X. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X. LDX >= max(1,N). */
/* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
/* The estimated forward error bound for each solution vector */
/* X(j) (the j-th column of the solution matrix X). */
/* If XTRUE is the true solution corresponding to X(j), FERR(j) */
/* is an estimated upper bound for the magnitude of the largest */
/* element in (X(j) - XTRUE) divided by the magnitude of the */
/* largest element in X(j). The estimate is as reliable as */
/* the estimate for RCOND, and is almost always a slight */
/* overestimate of the true error. */
/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
/* The componentwise relative backward error of each solution */
/* vector X(j) (i.e., the smallest relative change in */
/* any element of A or B that makes X(j) an exact solution). */
/* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */
/* IWORK (workspace) INTEGER array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Internal Parameters */
/* =================== */
/* ITMAX is the maximum number of steps of iterative refinement. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
--afp;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--ferr;
--berr;
--work;
--iwork;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*ldb < max(1,*n)) {
*info = -8;
} else if (*ldx < max(1,*n)) {
*info = -10;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DSPRFS", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0 || *nrhs == 0) {
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
ferr[j] = 0.;
berr[j] = 0.;
/* L10: */
}
return 0;
}
/* NZ = maximum number of nonzero elements in each row of A, plus 1 */
nz = *n + 1;
eps = dlamch_("Epsilon");
safmin = dlamch_("Safe minimum");
safe1 = nz * safmin;
safe2 = safe1 / eps;
/* Do for each right hand side */
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
count = 1;
lstres = 3.;
L20:
/* Loop until stopping criterion is satisfied. */
/* Compute residual R = B - A * X */
dcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1);
dspmv_(uplo, n, &c_b12, &ap[1], &x[j * x_dim1 + 1], &c__1, &c_b14, &
work[*n + 1], &c__1);
/* Compute componentwise relative backward error from formula */
/* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
/* where abs(Z) is the componentwise absolute value of the matrix */
/* or vector Z. If the i-th component of the denominator is less */
/* than SAFE2, then SAFE1 is added to the i-th components of the */
/* numerator and denominator before dividing. */
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
/* L30: */
}
/* Compute abs(A)*abs(X) + abs(B). */
kk = 1;
if (upper) {
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
s = 0.;
xk = (d__1 = x[k + j * x_dim1], abs(d__1));
ik = kk;
i__3 = k - 1;
for (i__ = 1; i__ <= i__3; ++i__) {
work[i__] += (d__1 = ap[ik], abs(d__1)) * xk;
s += (d__1 = ap[ik], abs(d__1)) * (d__2 = x[i__ + j *
x_dim1], abs(d__2));
++ik;
/* L40: */
}
work[k] = work[k] + (d__1 = ap[kk + k - 1], abs(d__1)) * xk +
s;
kk += k;
/* L50: */
}
} else {
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
s = 0.;
xk = (d__1 = x[k + j * x_dim1], abs(d__1));
work[k] += (d__1 = ap[kk], abs(d__1)) * xk;
ik = kk + 1;
i__3 = *n;
for (i__ = k + 1; i__ <= i__3; ++i__) {
work[i__] += (d__1 = ap[ik], abs(d__1)) * xk;
s += (d__1 = ap[ik], abs(d__1)) * (d__2 = x[i__ + j *
x_dim1], abs(d__2));
++ik;
/* L60: */
}
work[k] += s;
kk += *n - k + 1;
/* L70: */
}
}
s = 0.;
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
if (work[i__] > safe2) {
/* Computing MAX */
d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[
i__];
s = max(d__2,d__3);
} else {
/* Computing MAX */
d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1)
/ (work[i__] + safe1);
s = max(d__2,d__3);
}
/* L80: */
}
berr[j] = s;
/* Test stopping criterion. Continue iterating if */
/* 1) The residual BERR(J) is larger than machine epsilon, and */
/* 2) BERR(J) decreased by at least a factor of 2 during the */
/* last iteration, and */
/* 3) At most ITMAX iterations tried. */
if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {
/* Update solution and try again. */
dsptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[*n + 1], n, info);
daxpy_(n, &c_b14, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1)
;
lstres = berr[j];
++count;
goto L20;
}
/* Bound error from formula */
/* norm(X - XTRUE) / norm(X) .le. FERR = */
/* norm( abs(inv(A))* */
/* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
/* where */
/* norm(Z) is the magnitude of the largest component of Z */
/* inv(A) is the inverse of A */
/* abs(Z) is the componentwise absolute value of the matrix or */
/* vector Z */
/* NZ is the maximum number of nonzeros in any row of A, plus 1 */
/* EPS is machine epsilon */
/* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
/* is incremented by SAFE1 if the i-th component of */
/* abs(A)*abs(X) + abs(B) is less than SAFE2. */
/* Use DLACN2 to estimate the infinity-norm of the matrix */
/* inv(A) * diag(W), */
/* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
if (work[i__] > safe2) {
work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps *
work[i__];
} else {
work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps *
work[i__] + safe1;
}
/* L90: */
}
kase = 0;
L100:
dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], &
kase, isave);
if (kase != 0) {
if (kase == 1) {
/* Multiply by diag(W)*inv(A'). */
dsptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[*n + 1], n,
info);
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
work[*n + i__] = work[i__] * work[*n + i__];
/* L110: */
}
} else if (kase == 2) {
/* Multiply by inv(A)*diag(W). */
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
work[*n + i__] = work[i__] * work[*n + i__];
/* L120: */
}
dsptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[*n + 1], n,
info);
}
goto L100;
}
/* Normalize error. */
lstres = 0.;
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1));
lstres = max(d__2,d__3);
/* L130: */
}
if (lstres != 0.) {
ferr[j] /= lstres;
}
/* L140: */
}
return 0;
/* End of DSPRFS */
} /* dsprfs_ */
|