1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
/* dsbgv.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int dsbgv_(char *jobz, char *uplo, integer *n, integer *ka,
integer *kb, doublereal *ab, integer *ldab, doublereal *bb, integer *
ldbb, doublereal *w, doublereal *z__, integer *ldz, doublereal *work,
integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;
/* Local variables */
integer inde;
char vect[1];
extern logical lsame_(char *, char *);
integer iinfo;
logical upper, wantz;
extern /* Subroutine */ int xerbla_(char *, integer *), dpbstf_(
char *, integer *, integer *, doublereal *, integer *, integer *), dsbtrd_(char *, char *, integer *, integer *, doublereal
*, integer *, doublereal *, doublereal *, doublereal *, integer *,
doublereal *, integer *), dsbgst_(char *, char *,
integer *, integer *, integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *), dsterf_(integer *, doublereal *,
doublereal *, integer *);
integer indwrk;
extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *,
doublereal *, doublereal *, integer *, doublereal *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DSBGV computes all the eigenvalues, and optionally, the eigenvectors */
/* of a real generalized symmetric-definite banded eigenproblem, of */
/* the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */
/* and banded, and B is also positive definite. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangles of A and B are stored; */
/* = 'L': Lower triangles of A and B are stored. */
/* N (input) INTEGER */
/* The order of the matrices A and B. N >= 0. */
/* KA (input) INTEGER */
/* The number of superdiagonals of the matrix A if UPLO = 'U', */
/* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
/* KB (input) INTEGER */
/* The number of superdiagonals of the matrix B if UPLO = 'U', */
/* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */
/* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */
/* On entry, the upper or lower triangle of the symmetric band */
/* matrix A, stored in the first ka+1 rows of the array. The */
/* j-th column of A is stored in the j-th column of the array AB */
/* as follows: */
/* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */
/* On exit, the contents of AB are destroyed. */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= KA+1. */
/* BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N) */
/* On entry, the upper or lower triangle of the symmetric band */
/* matrix B, stored in the first kb+1 rows of the array. The */
/* j-th column of B is stored in the j-th column of the array BB */
/* as follows: */
/* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
/* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */
/* On exit, the factor S from the split Cholesky factorization */
/* B = S**T*S, as returned by DPBSTF. */
/* LDBB (input) INTEGER */
/* The leading dimension of the array BB. LDBB >= KB+1. */
/* W (output) DOUBLE PRECISION array, dimension (N) */
/* If INFO = 0, the eigenvalues in ascending order. */
/* Z (output) DOUBLE PRECISION array, dimension (LDZ, N) */
/* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
/* eigenvectors, with the i-th column of Z holding the */
/* eigenvector associated with W(i). The eigenvectors are */
/* normalized so that Z**T*B*Z = I. */
/* If JOBZ = 'N', then Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= N. */
/* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, and i is: */
/* <= N: the algorithm failed to converge: */
/* i off-diagonal elements of an intermediate */
/* tridiagonal form did not converge to zero; */
/* > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF */
/* returned INFO = i: B is not positive definite. */
/* The factorization of B could not be completed and */
/* no eigenvalues or eigenvectors were computed. */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
bb_dim1 = *ldbb;
bb_offset = 1 + bb_dim1;
bb -= bb_offset;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
/* Function Body */
wantz = lsame_(jobz, "V");
upper = lsame_(uplo, "U");
*info = 0;
if (! (wantz || lsame_(jobz, "N"))) {
*info = -1;
} else if (! (upper || lsame_(uplo, "L"))) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*ka < 0) {
*info = -4;
} else if (*kb < 0 || *kb > *ka) {
*info = -5;
} else if (*ldab < *ka + 1) {
*info = -7;
} else if (*ldbb < *kb + 1) {
*info = -9;
} else if (*ldz < 1 || wantz && *ldz < *n) {
*info = -12;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DSBGV ", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Form a split Cholesky factorization of B. */
dpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
if (*info != 0) {
*info = *n + *info;
return 0;
}
/* Transform problem to standard eigenvalue problem. */
inde = 1;
indwrk = inde + *n;
dsbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb,
&z__[z_offset], ldz, &work[indwrk], &iinfo)
;
/* Reduce to tridiagonal form. */
if (wantz) {
*(unsigned char *)vect = 'U';
} else {
*(unsigned char *)vect = 'N';
}
dsbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[
z_offset], ldz, &work[indwrk], &iinfo);
/* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEQR. */
if (! wantz) {
dsterf_(n, &w[1], &work[inde], info);
} else {
dsteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[
indwrk], info);
}
return 0;
/* End of DSBGV */
} /* dsbgv_ */
|