aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dpttrf.c
blob: 070ef3436ee686eabae3e871d58868fde8c0f271 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/* dpttrf.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int dpttrf_(integer *n, doublereal *d__, doublereal *e, 
	integer *info)
{
    /* System generated locals */
    integer i__1;

    /* Local variables */
    integer i__, i4;
    doublereal ei;
    extern /* Subroutine */ int xerbla_(char *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DPTTRF computes the L*D*L' factorization of a real symmetric */
/*  positive definite tridiagonal matrix A.  The factorization may also */
/*  be regarded as having the form A = U'*D*U. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
/*          On entry, the n diagonal elements of the tridiagonal matrix */
/*          A.  On exit, the n diagonal elements of the diagonal matrix */
/*          D from the L*D*L' factorization of A. */

/*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
/*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
/*          matrix A.  On exit, the (n-1) subdiagonal elements of the */
/*          unit bidiagonal factor L from the L*D*L' factorization of A. */
/*          E can also be regarded as the superdiagonal of the unit */
/*          bidiagonal factor U from the U'*D*U factorization of A. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -k, the k-th argument had an illegal value */
/*          > 0: if INFO = k, the leading minor of order k is not */
/*               positive definite; if k < N, the factorization could not */
/*               be completed, while if k = N, the factorization was */
/*               completed, but D(N) <= 0. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --e;
    --d__;

    /* Function Body */
    *info = 0;
    if (*n < 0) {
	*info = -1;
	i__1 = -(*info);
	xerbla_("DPTTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Compute the L*D*L' (or U'*D*U) factorization of A. */

    i4 = (*n - 1) % 4;
    i__1 = i4;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (d__[i__] <= 0.) {
	    *info = i__;
	    goto L30;
	}
	ei = e[i__];
	e[i__] = ei / d__[i__];
	d__[i__ + 1] -= e[i__] * ei;
/* L10: */
    }

    i__1 = *n - 4;
    for (i__ = i4 + 1; i__ <= i__1; i__ += 4) {

/*        Drop out of the loop if d(i) <= 0: the matrix is not positive */
/*        definite. */

	if (d__[i__] <= 0.) {
	    *info = i__;
	    goto L30;
	}

/*        Solve for e(i) and d(i+1). */

	ei = e[i__];
	e[i__] = ei / d__[i__];
	d__[i__ + 1] -= e[i__] * ei;

	if (d__[i__ + 1] <= 0.) {
	    *info = i__ + 1;
	    goto L30;
	}

/*        Solve for e(i+1) and d(i+2). */

	ei = e[i__ + 1];
	e[i__ + 1] = ei / d__[i__ + 1];
	d__[i__ + 2] -= e[i__ + 1] * ei;

	if (d__[i__ + 2] <= 0.) {
	    *info = i__ + 2;
	    goto L30;
	}

/*        Solve for e(i+2) and d(i+3). */

	ei = e[i__ + 2];
	e[i__ + 2] = ei / d__[i__ + 2];
	d__[i__ + 3] -= e[i__ + 2] * ei;

	if (d__[i__ + 3] <= 0.) {
	    *info = i__ + 3;
	    goto L30;
	}

/*        Solve for e(i+3) and d(i+4). */

	ei = e[i__ + 3];
	e[i__ + 3] = ei / d__[i__ + 3];
	d__[i__ + 4] -= e[i__ + 3] * ei;
/* L20: */
    }

/*     Check d(n) for positive definiteness. */

    if (d__[*n] <= 0.) {
	*info = *n;
    }

L30:
    return 0;

/*     End of DPTTRF */

} /* dpttrf_ */