1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
/* dpstrf.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static doublereal c_b22 = -1.;
static doublereal c_b24 = 1.;
/* Subroutine */ int dpstrf_(char *uplo, integer *n, doublereal *a, integer *
lda, integer *piv, integer *rank, doublereal *tol, doublereal *work,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
doublereal d__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, k, maxlocvar, jb, nb;
doublereal ajj;
integer pvt;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *);
doublereal dtemp;
integer itemp;
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
doublereal *, integer *);
doublereal dstop;
logical upper;
extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *,
doublereal *, doublereal *, integer *, doublereal *, doublereal *,
integer *), dpstf2_(char *, integer *,
doublereal *, integer *, integer *, integer *, doublereal *,
doublereal *, integer *);
extern doublereal dlamch_(char *);
extern logical disnan_(doublereal *);
extern /* Subroutine */ int xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
extern integer dmaxloc_(doublereal *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Craig Lucas, University of Manchester / NAG Ltd. */
/* October, 2008 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DPSTRF computes the Cholesky factorization with complete */
/* pivoting of a real symmetric positive semidefinite matrix A. */
/* The factorization has the form */
/* P' * A * P = U' * U , if UPLO = 'U', */
/* P' * A * P = L * L', if UPLO = 'L', */
/* where U is an upper triangular matrix and L is lower triangular, and */
/* P is stored as vector PIV. */
/* This algorithm does not attempt to check that A is positive */
/* semidefinite. This version of the algorithm calls level 3 BLAS. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies whether the upper or lower triangular part of the */
/* symmetric matrix A is stored. */
/* = 'U': Upper triangular */
/* = 'L': Lower triangular */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
/* n by n upper triangular part of A contains the upper */
/* triangular part of the matrix A, and the strictly lower */
/* triangular part of A is not referenced. If UPLO = 'L', the */
/* leading n by n lower triangular part of A contains the lower */
/* triangular part of the matrix A, and the strictly upper */
/* triangular part of A is not referenced. */
/* On exit, if INFO = 0, the factor U or L from the Cholesky */
/* factorization as above. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* PIV (output) INTEGER array, dimension (N) */
/* PIV is such that the nonzero entries are P( PIV(K), K ) = 1. */
/* RANK (output) INTEGER */
/* The rank of A given by the number of steps the algorithm */
/* completed. */
/* TOL (input) DOUBLE PRECISION */
/* User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) ) */
/* will be used. The algorithm terminates at the (K-1)st step */
/* if the pivot <= TOL. */
/* WORK DOUBLE PRECISION array, dimension (2*N) */
/* Work space. */
/* INFO (output) INTEGER */
/* < 0: If INFO = -K, the K-th argument had an illegal value, */
/* = 0: algorithm completed successfully, and */
/* > 0: the matrix A is either rank deficient with computed rank */
/* as returned in RANK, or is indefinite. See Section 7 of */
/* LAPACK Working Note #161 for further information. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--work;
--piv;
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DPSTRF", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Get block size */
nb = ilaenv_(&c__1, "DPOTRF", uplo, n, &c_n1, &c_n1, &c_n1);
if (nb <= 1 || nb >= *n) {
/* Use unblocked code */
dpstf2_(uplo, n, &a[a_dim1 + 1], lda, &piv[1], rank, tol, &work[1],
info);
goto L200;
} else {
/* Initialize PIV */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
piv[i__] = i__;
/* L100: */
}
/* Compute stopping value */
pvt = 1;
ajj = a[pvt + pvt * a_dim1];
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
if (a[i__ + i__ * a_dim1] > ajj) {
pvt = i__;
ajj = a[pvt + pvt * a_dim1];
}
}
if (ajj == 0. || disnan_(&ajj)) {
*rank = 0;
*info = 1;
goto L200;
}
/* Compute stopping value if not supplied */
if (*tol < 0.) {
dstop = *n * dlamch_("Epsilon") * ajj;
} else {
dstop = *tol;
}
if (upper) {
/* Compute the Cholesky factorization P' * A * P = U' * U */
i__1 = *n;
i__2 = nb;
for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
/* Account for last block not being NB wide */
/* Computing MIN */
i__3 = nb, i__4 = *n - k + 1;
jb = min(i__3,i__4);
/* Set relevant part of first half of WORK to zero, */
/* holds dot products */
i__3 = *n;
for (i__ = k; i__ <= i__3; ++i__) {
work[i__] = 0.;
/* L110: */
}
i__3 = k + jb - 1;
for (j = k; j <= i__3; ++j) {
/* Find pivot, test for exit, else swap rows and columns */
/* Update dot products, compute possible pivots which are */
/* stored in the second half of WORK */
i__4 = *n;
for (i__ = j; i__ <= i__4; ++i__) {
if (j > k) {
/* Computing 2nd power */
d__1 = a[j - 1 + i__ * a_dim1];
work[i__] += d__1 * d__1;
}
work[*n + i__] = a[i__ + i__ * a_dim1] - work[i__];
/* L120: */
}
if (j > 1) {
maxlocvar = (*n << 1) - (*n + j) + 1;
itemp = dmaxloc_(&work[*n + j], &maxlocvar);
pvt = itemp + j - 1;
ajj = work[*n + pvt];
if (ajj <= dstop || disnan_(&ajj)) {
a[j + j * a_dim1] = ajj;
goto L190;
}
}
if (j != pvt) {
/* Pivot OK, so can now swap pivot rows and columns */
a[pvt + pvt * a_dim1] = a[j + j * a_dim1];
i__4 = j - 1;
dswap_(&i__4, &a[j * a_dim1 + 1], &c__1, &a[pvt *
a_dim1 + 1], &c__1);
if (pvt < *n) {
i__4 = *n - pvt;
dswap_(&i__4, &a[j + (pvt + 1) * a_dim1], lda, &a[
pvt + (pvt + 1) * a_dim1], lda);
}
i__4 = pvt - j - 1;
dswap_(&i__4, &a[j + (j + 1) * a_dim1], lda, &a[j + 1
+ pvt * a_dim1], &c__1);
/* Swap dot products and PIV */
dtemp = work[j];
work[j] = work[pvt];
work[pvt] = dtemp;
itemp = piv[pvt];
piv[pvt] = piv[j];
piv[j] = itemp;
}
ajj = sqrt(ajj);
a[j + j * a_dim1] = ajj;
/* Compute elements J+1:N of row J. */
if (j < *n) {
i__4 = j - k;
i__5 = *n - j;
dgemv_("Trans", &i__4, &i__5, &c_b22, &a[k + (j + 1) *
a_dim1], lda, &a[k + j * a_dim1], &c__1, &
c_b24, &a[j + (j + 1) * a_dim1], lda);
i__4 = *n - j;
d__1 = 1. / ajj;
dscal_(&i__4, &d__1, &a[j + (j + 1) * a_dim1], lda);
}
/* L130: */
}
/* Update trailing matrix, J already incremented */
if (k + jb <= *n) {
i__3 = *n - j + 1;
dsyrk_("Upper", "Trans", &i__3, &jb, &c_b22, &a[k + j *
a_dim1], lda, &c_b24, &a[j + j * a_dim1], lda);
}
/* L140: */
}
} else {
/* Compute the Cholesky factorization P' * A * P = L * L' */
i__2 = *n;
i__1 = nb;
for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
/* Account for last block not being NB wide */
/* Computing MIN */
i__3 = nb, i__4 = *n - k + 1;
jb = min(i__3,i__4);
/* Set relevant part of first half of WORK to zero, */
/* holds dot products */
i__3 = *n;
for (i__ = k; i__ <= i__3; ++i__) {
work[i__] = 0.;
/* L150: */
}
i__3 = k + jb - 1;
for (j = k; j <= i__3; ++j) {
/* Find pivot, test for exit, else swap rows and columns */
/* Update dot products, compute possible pivots which are */
/* stored in the second half of WORK */
i__4 = *n;
for (i__ = j; i__ <= i__4; ++i__) {
if (j > k) {
/* Computing 2nd power */
d__1 = a[i__ + (j - 1) * a_dim1];
work[i__] += d__1 * d__1;
}
work[*n + i__] = a[i__ + i__ * a_dim1] - work[i__];
/* L160: */
}
if (j > 1) {
maxlocvar = (*n << 1) - (*n + j) + 1;
itemp = dmaxloc_(&work[*n + j], &maxlocvar);
pvt = itemp + j - 1;
ajj = work[*n + pvt];
if (ajj <= dstop || disnan_(&ajj)) {
a[j + j * a_dim1] = ajj;
goto L190;
}
}
if (j != pvt) {
/* Pivot OK, so can now swap pivot rows and columns */
a[pvt + pvt * a_dim1] = a[j + j * a_dim1];
i__4 = j - 1;
dswap_(&i__4, &a[j + a_dim1], lda, &a[pvt + a_dim1],
lda);
if (pvt < *n) {
i__4 = *n - pvt;
dswap_(&i__4, &a[pvt + 1 + j * a_dim1], &c__1, &a[
pvt + 1 + pvt * a_dim1], &c__1);
}
i__4 = pvt - j - 1;
dswap_(&i__4, &a[j + 1 + j * a_dim1], &c__1, &a[pvt +
(j + 1) * a_dim1], lda);
/* Swap dot products and PIV */
dtemp = work[j];
work[j] = work[pvt];
work[pvt] = dtemp;
itemp = piv[pvt];
piv[pvt] = piv[j];
piv[j] = itemp;
}
ajj = sqrt(ajj);
a[j + j * a_dim1] = ajj;
/* Compute elements J+1:N of column J. */
if (j < *n) {
i__4 = *n - j;
i__5 = j - k;
dgemv_("No Trans", &i__4, &i__5, &c_b22, &a[j + 1 + k
* a_dim1], lda, &a[j + k * a_dim1], lda, &
c_b24, &a[j + 1 + j * a_dim1], &c__1);
i__4 = *n - j;
d__1 = 1. / ajj;
dscal_(&i__4, &d__1, &a[j + 1 + j * a_dim1], &c__1);
}
/* L170: */
}
/* Update trailing matrix, J already incremented */
if (k + jb <= *n) {
i__3 = *n - j + 1;
dsyrk_("Lower", "No Trans", &i__3, &jb, &c_b22, &a[j + k *
a_dim1], lda, &c_b24, &a[j + j * a_dim1], lda);
}
/* L180: */
}
}
}
/* Ran to completion, A has full rank */
*rank = *n;
goto L200;
L190:
/* Rank is the number of steps completed. Set INFO = 1 to signal */
/* that the factorization cannot be used to solve a system. */
*rank = j - 1;
*info = 1;
L200:
return 0;
/* End of DPSTRF */
} /* dpstrf_ */
|