aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dpptri.c
blob: 5de72f0c4cf9edca45a1af4afc83a9d928d45285 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/* dpptri.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static doublereal c_b8 = 1.;
static integer c__1 = 1;

/* Subroutine */ int dpptri_(char *uplo, integer *n, doublereal *ap, integer *
	info)
{
    /* System generated locals */
    integer i__1, i__2;

    /* Local variables */
    integer j, jc, jj;
    doublereal ajj;
    integer jjn;
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    extern /* Subroutine */ int dspr_(char *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *), dscal_(integer *, 
	    doublereal *, doublereal *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dtpmv_(char *, char *, char *, integer *, 
	    doublereal *, doublereal *, integer *);
    logical upper;
    extern /* Subroutine */ int xerbla_(char *, integer *), dtptri_(
	    char *, char *, integer *, doublereal *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DPPTRI computes the inverse of a real symmetric positive definite */
/*  matrix A using the Cholesky factorization A = U**T*U or A = L*L**T */
/*  computed by DPPTRF. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangular factor is stored in AP; */
/*          = 'L':  Lower triangular factor is stored in AP. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/*          On entry, the triangular factor U or L from the Cholesky */
/*          factorization A = U**T*U or A = L*L**T, packed columnwise as */
/*          a linear array.  The j-th column of U or L is stored in the */
/*          array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. */

/*          On exit, the upper or lower triangle of the (symmetric) */
/*          inverse of A, overwriting the input factor U or L. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the (i,i) element of the factor U or L is */
/*                zero, and the inverse could not be computed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DPPTRI", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Invert the triangular Cholesky factor U or L. */

    dtptri_(uplo, "Non-unit", n, &ap[1], info);
    if (*info > 0) {
	return 0;
    }

    if (upper) {

/*        Compute the product inv(U) * inv(U)'. */

	jj = 0;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    jc = jj + 1;
	    jj += j;
	    if (j > 1) {
		i__2 = j - 1;
		dspr_("Upper", &i__2, &c_b8, &ap[jc], &c__1, &ap[1]);
	    }
	    ajj = ap[jj];
	    dscal_(&j, &ajj, &ap[jc], &c__1);
/* L10: */
	}

    } else {

/*        Compute the product inv(L)' * inv(L). */

	jj = 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    jjn = jj + *n - j + 1;
	    i__2 = *n - j + 1;
	    ap[jj] = ddot_(&i__2, &ap[jj], &c__1, &ap[jj], &c__1);
	    if (j < *n) {
		i__2 = *n - j;
		dtpmv_("Lower", "Transpose", "Non-unit", &i__2, &ap[jjn], &ap[
			jj + 1], &c__1);
	    }
	    jj = jjn;
/* L20: */
	}
    }

    return 0;

/*     End of DPPTRI */

} /* dpptri_ */