aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlatrz.c
blob: 9590da3e155347997494e534ec9e108b3cbf5412 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/* dlatrz.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int dlatrz_(integer *m, integer *n, integer *l, doublereal *
	a, integer *lda, doublereal *tau, doublereal *work)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;

    /* Local variables */
    integer i__;
    extern /* Subroutine */ int dlarz_(char *, integer *, integer *, integer *
, doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *), dlarfp_(integer *, doublereal *, 
	    doublereal *, integer *, doublereal *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix */
/*  [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z, by means */
/*  of orthogonal transformations.  Z is an (M+L)-by-(M+L) orthogonal */
/*  matrix and, R and A1 are M-by-M upper triangular matrices. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  L       (input) INTEGER */
/*          The number of columns of the matrix A containing the */
/*          meaningful part of the Householder vectors. N-M >= L >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the leading M-by-N upper trapezoidal part of the */
/*          array A must contain the matrix to be factorized. */
/*          On exit, the leading M-by-M upper triangular part of A */
/*          contains the upper triangular matrix R, and elements N-L+1 to */
/*          N of the first M rows of A, with the array TAU, represent the */
/*          orthogonal matrix Z as a product of M elementary reflectors. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  TAU     (output) DOUBLE PRECISION array, dimension (M) */
/*          The scalar factors of the elementary reflectors. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (M) */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */

/*  The factorization is obtained by Householder's method.  The kth */
/*  transformation matrix, Z( k ), which is used to introduce zeros into */
/*  the ( m - k + 1 )th row of A, is given in the form */

/*     Z( k ) = ( I     0   ), */
/*              ( 0  T( k ) ) */

/*  where */

/*     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ), */
/*                                                 (   0    ) */
/*                                                 ( z( k ) ) */

/*  tau is a scalar and z( k ) is an l element vector. tau and z( k ) */
/*  are chosen to annihilate the elements of the kth row of A2. */

/*  The scalar tau is returned in the kth element of TAU and the vector */
/*  u( k ) in the kth row of A2, such that the elements of z( k ) are */
/*  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in */
/*  the upper triangular part of A1. */

/*  Z is given by */

/*     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

/*     Quick return if possible */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    if (*m == 0) {
	return 0;
    } else if (*m == *n) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    tau[i__] = 0.;
/* L10: */
	}
	return 0;
    }

    for (i__ = *m; i__ >= 1; --i__) {

/*        Generate elementary reflector H(i) to annihilate */
/*        [ A(i,i) A(i,n-l+1:n) ] */

	i__1 = *l + 1;
	dlarfp_(&i__1, &a[i__ + i__ * a_dim1], &a[i__ + (*n - *l + 1) * 
		a_dim1], lda, &tau[i__]);

/*        Apply H(i) to A(1:i-1,i:n) from the right */

	i__1 = i__ - 1;
	i__2 = *n - i__ + 1;
	dlarz_("Right", &i__1, &i__2, l, &a[i__ + (*n - *l + 1) * a_dim1], 
		lda, &tau[i__], &a[i__ * a_dim1 + 1], lda, &work[1]);

/* L20: */
    }

    return 0;

/*     End of DLATRZ */

} /* dlatrz_ */