aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlasy2.c
blob: 352463d559d3067e808606ba916499600a6bb29a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/* dlasy2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__4 = 4;
static integer c__1 = 1;
static integer c__16 = 16;
static integer c__0 = 0;

/* Subroutine */ int dlasy2_(logical *ltranl, logical *ltranr, integer *isgn, 
	integer *n1, integer *n2, doublereal *tl, integer *ldtl, doublereal *
	tr, integer *ldtr, doublereal *b, integer *ldb, doublereal *scale, 
	doublereal *x, integer *ldx, doublereal *xnorm, integer *info)
{
    /* Initialized data */

    static integer locu12[4] = { 3,4,1,2 };
    static integer locl21[4] = { 2,1,4,3 };
    static integer locu22[4] = { 4,3,2,1 };
    static logical xswpiv[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
    static logical bswpiv[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };

    /* System generated locals */
    integer b_dim1, b_offset, tl_dim1, tl_offset, tr_dim1, tr_offset, x_dim1, 
	    x_offset;
    doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8;

    /* Local variables */
    integer i__, j, k;
    doublereal x2[2], l21, u11, u12;
    integer ip, jp;
    doublereal u22, t16[16]	/* was [4][4] */, gam, bet, eps, sgn, tmp[4], 
	    tau1, btmp[4], smin;
    integer ipiv;
    doublereal temp;
    integer jpiv[4];
    doublereal xmax;
    integer ipsv, jpsv;
    logical bswap;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
	    *, doublereal *, integer *);
    logical xswap;
    extern doublereal dlamch_(char *);
    extern integer idamax_(integer *, doublereal *, integer *);
    doublereal smlnum;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in */

/*         op(TL)*X + ISGN*X*op(TR) = SCALE*B, */

/*  where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or */
/*  -1.  op(T) = T or T', where T' denotes the transpose of T. */

/*  Arguments */
/*  ========= */

/*  LTRANL  (input) LOGICAL */
/*          On entry, LTRANL specifies the op(TL): */
/*             = .FALSE., op(TL) = TL, */
/*             = .TRUE., op(TL) = TL'. */

/*  LTRANR  (input) LOGICAL */
/*          On entry, LTRANR specifies the op(TR): */
/*            = .FALSE., op(TR) = TR, */
/*            = .TRUE., op(TR) = TR'. */

/*  ISGN    (input) INTEGER */
/*          On entry, ISGN specifies the sign of the equation */
/*          as described before. ISGN may only be 1 or -1. */

/*  N1      (input) INTEGER */
/*          On entry, N1 specifies the order of matrix TL. */
/*          N1 may only be 0, 1 or 2. */

/*  N2      (input) INTEGER */
/*          On entry, N2 specifies the order of matrix TR. */
/*          N2 may only be 0, 1 or 2. */

/*  TL      (input) DOUBLE PRECISION array, dimension (LDTL,2) */
/*          On entry, TL contains an N1 by N1 matrix. */

/*  LDTL    (input) INTEGER */
/*          The leading dimension of the matrix TL. LDTL >= max(1,N1). */

/*  TR      (input) DOUBLE PRECISION array, dimension (LDTR,2) */
/*          On entry, TR contains an N2 by N2 matrix. */

/*  LDTR    (input) INTEGER */
/*          The leading dimension of the matrix TR. LDTR >= max(1,N2). */

/*  B       (input) DOUBLE PRECISION array, dimension (LDB,2) */
/*          On entry, the N1 by N2 matrix B contains the right-hand */
/*          side of the equation. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the matrix B. LDB >= max(1,N1). */

/*  SCALE   (output) DOUBLE PRECISION */
/*          On exit, SCALE contains the scale factor. SCALE is chosen */
/*          less than or equal to 1 to prevent the solution overflowing. */

/*  X       (output) DOUBLE PRECISION array, dimension (LDX,2) */
/*          On exit, X contains the N1 by N2 solution. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the matrix X. LDX >= max(1,N1). */

/*  XNORM   (output) DOUBLE PRECISION */
/*          On exit, XNORM is the infinity-norm of the solution. */

/*  INFO    (output) INTEGER */
/*          On exit, INFO is set to */
/*             0: successful exit. */
/*             1: TL and TR have too close eigenvalues, so TL or */
/*                TR is perturbed to get a nonsingular equation. */
/*          NOTE: In the interests of speed, this routine does not */
/*                check the inputs for errors. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    tl_dim1 = *ldtl;
    tl_offset = 1 + tl_dim1;
    tl -= tl_offset;
    tr_dim1 = *ldtr;
    tr_offset = 1 + tr_dim1;
    tr -= tr_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Do not check the input parameters for errors */

    *info = 0;

/*     Quick return if possible */

    if (*n1 == 0 || *n2 == 0) {
	return 0;
    }

/*     Set constants to control overflow */

    eps = dlamch_("P");
    smlnum = dlamch_("S") / eps;
    sgn = (doublereal) (*isgn);

    k = *n1 + *n1 + *n2 - 2;
    switch (k) {
	case 1:  goto L10;
	case 2:  goto L20;
	case 3:  goto L30;
	case 4:  goto L50;
    }

/*     1 by 1: TL11*X + SGN*X*TR11 = B11 */

L10:
    tau1 = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
    bet = abs(tau1);
    if (bet <= smlnum) {
	tau1 = smlnum;
	bet = smlnum;
	*info = 1;
    }

    *scale = 1.;
    gam = (d__1 = b[b_dim1 + 1], abs(d__1));
    if (smlnum * gam > bet) {
	*scale = 1. / gam;
    }

    x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / tau1;
    *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
    return 0;

/*     1 by 2: */
/*     TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12]  = [B11 B12] */
/*                                       [TR21 TR22] */

L20:

/* Computing MAX */
/* Computing MAX */
    d__7 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__8 = (d__2 = tr[tr_dim1 + 1]
	    , abs(d__2)), d__7 = max(d__7,d__8), d__8 = (d__3 = tr[(tr_dim1 <<
	     1) + 1], abs(d__3)), d__7 = max(d__7,d__8), d__8 = (d__4 = tr[
	    tr_dim1 + 2], abs(d__4)), d__7 = max(d__7,d__8), d__8 = (d__5 = 
	    tr[(tr_dim1 << 1) + 2], abs(d__5));
    d__6 = eps * max(d__7,d__8);
    smin = max(d__6,smlnum);
    tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
    tmp[3] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];
    if (*ltranr) {
	tmp[1] = sgn * tr[tr_dim1 + 2];
	tmp[2] = sgn * tr[(tr_dim1 << 1) + 1];
    } else {
	tmp[1] = sgn * tr[(tr_dim1 << 1) + 1];
	tmp[2] = sgn * tr[tr_dim1 + 2];
    }
    btmp[0] = b[b_dim1 + 1];
    btmp[1] = b[(b_dim1 << 1) + 1];
    goto L40;

/*     2 by 1: */
/*          op[TL11 TL12]*[X11] + ISGN* [X11]*TR11  = [B11] */
/*            [TL21 TL22] [X21]         [X21]         [B21] */

L30:
/* Computing MAX */
/* Computing MAX */
    d__7 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__8 = (d__2 = tl[tl_dim1 + 1]
	    , abs(d__2)), d__7 = max(d__7,d__8), d__8 = (d__3 = tl[(tl_dim1 <<
	     1) + 1], abs(d__3)), d__7 = max(d__7,d__8), d__8 = (d__4 = tl[
	    tl_dim1 + 2], abs(d__4)), d__7 = max(d__7,d__8), d__8 = (d__5 = 
	    tl[(tl_dim1 << 1) + 2], abs(d__5));
    d__6 = eps * max(d__7,d__8);
    smin = max(d__6,smlnum);
    tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
    tmp[3] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];
    if (*ltranl) {
	tmp[1] = tl[(tl_dim1 << 1) + 1];
	tmp[2] = tl[tl_dim1 + 2];
    } else {
	tmp[1] = tl[tl_dim1 + 2];
	tmp[2] = tl[(tl_dim1 << 1) + 1];
    }
    btmp[0] = b[b_dim1 + 1];
    btmp[1] = b[b_dim1 + 2];
L40:

/*     Solve 2 by 2 system using complete pivoting. */
/*     Set pivots less than SMIN to SMIN. */

    ipiv = idamax_(&c__4, tmp, &c__1);
    u11 = tmp[ipiv - 1];
    if (abs(u11) <= smin) {
	*info = 1;
	u11 = smin;
    }
    u12 = tmp[locu12[ipiv - 1] - 1];
    l21 = tmp[locl21[ipiv - 1] - 1] / u11;
    u22 = tmp[locu22[ipiv - 1] - 1] - u12 * l21;
    xswap = xswpiv[ipiv - 1];
    bswap = bswpiv[ipiv - 1];
    if (abs(u22) <= smin) {
	*info = 1;
	u22 = smin;
    }
    if (bswap) {
	temp = btmp[1];
	btmp[1] = btmp[0] - l21 * temp;
	btmp[0] = temp;
    } else {
	btmp[1] -= l21 * btmp[0];
    }
    *scale = 1.;
    if (smlnum * 2. * abs(btmp[1]) > abs(u22) || smlnum * 2. * abs(btmp[0]) > 
	    abs(u11)) {
/* Computing MAX */
	d__1 = abs(btmp[0]), d__2 = abs(btmp[1]);
	*scale = .5 / max(d__1,d__2);
	btmp[0] *= *scale;
	btmp[1] *= *scale;
    }
    x2[1] = btmp[1] / u22;
    x2[0] = btmp[0] / u11 - u12 / u11 * x2[1];
    if (xswap) {
	temp = x2[1];
	x2[1] = x2[0];
	x2[0] = temp;
    }
    x[x_dim1 + 1] = x2[0];
    if (*n1 == 1) {
	x[(x_dim1 << 1) + 1] = x2[1];
	*xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 1) 
		+ 1], abs(d__2));
    } else {
	x[x_dim1 + 2] = x2[1];
/* Computing MAX */
	d__3 = (d__1 = x[x_dim1 + 1], abs(d__1)), d__4 = (d__2 = x[x_dim1 + 2]
		, abs(d__2));
	*xnorm = max(d__3,d__4);
    }
    return 0;

/*     2 by 2: */
/*     op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12] */
/*       [TL21 TL22] [X21 X22]        [X21 X22]   [TR21 TR22]   [B21 B22] */

/*     Solve equivalent 4 by 4 system using complete pivoting. */
/*     Set pivots less than SMIN to SMIN. */

L50:
/* Computing MAX */
    d__5 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__6 = (d__2 = tr[(tr_dim1 << 
	    1) + 1], abs(d__2)), d__5 = max(d__5,d__6), d__6 = (d__3 = tr[
	    tr_dim1 + 2], abs(d__3)), d__5 = max(d__5,d__6), d__6 = (d__4 = 
	    tr[(tr_dim1 << 1) + 2], abs(d__4));
    smin = max(d__5,d__6);
/* Computing MAX */
    d__5 = smin, d__6 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__5 = max(d__5,
	    d__6), d__6 = (d__2 = tl[(tl_dim1 << 1) + 1], abs(d__2)), d__5 = 
	    max(d__5,d__6), d__6 = (d__3 = tl[tl_dim1 + 2], abs(d__3)), d__5 =
	     max(d__5,d__6), d__6 = (d__4 = tl[(tl_dim1 << 1) + 2], abs(d__4))
	    ;
    smin = max(d__5,d__6);
/* Computing MAX */
    d__1 = eps * smin;
    smin = max(d__1,smlnum);
    btmp[0] = 0.;
    dcopy_(&c__16, btmp, &c__0, t16, &c__1);
    t16[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
    t16[5] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];
    t16[10] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];
    t16[15] = tl[(tl_dim1 << 1) + 2] + sgn * tr[(tr_dim1 << 1) + 2];
    if (*ltranl) {
	t16[4] = tl[tl_dim1 + 2];
	t16[1] = tl[(tl_dim1 << 1) + 1];
	t16[14] = tl[tl_dim1 + 2];
	t16[11] = tl[(tl_dim1 << 1) + 1];
    } else {
	t16[4] = tl[(tl_dim1 << 1) + 1];
	t16[1] = tl[tl_dim1 + 2];
	t16[14] = tl[(tl_dim1 << 1) + 1];
	t16[11] = tl[tl_dim1 + 2];
    }
    if (*ltranr) {
	t16[8] = sgn * tr[(tr_dim1 << 1) + 1];
	t16[13] = sgn * tr[(tr_dim1 << 1) + 1];
	t16[2] = sgn * tr[tr_dim1 + 2];
	t16[7] = sgn * tr[tr_dim1 + 2];
    } else {
	t16[8] = sgn * tr[tr_dim1 + 2];
	t16[13] = sgn * tr[tr_dim1 + 2];
	t16[2] = sgn * tr[(tr_dim1 << 1) + 1];
	t16[7] = sgn * tr[(tr_dim1 << 1) + 1];
    }
    btmp[0] = b[b_dim1 + 1];
    btmp[1] = b[b_dim1 + 2];
    btmp[2] = b[(b_dim1 << 1) + 1];
    btmp[3] = b[(b_dim1 << 1) + 2];

/*     Perform elimination */

    for (i__ = 1; i__ <= 3; ++i__) {
	xmax = 0.;
	for (ip = i__; ip <= 4; ++ip) {
	    for (jp = i__; jp <= 4; ++jp) {
		if ((d__1 = t16[ip + (jp << 2) - 5], abs(d__1)) >= xmax) {
		    xmax = (d__1 = t16[ip + (jp << 2) - 5], abs(d__1));
		    ipsv = ip;
		    jpsv = jp;
		}
/* L60: */
	    }
/* L70: */
	}
	if (ipsv != i__) {
	    dswap_(&c__4, &t16[ipsv - 1], &c__4, &t16[i__ - 1], &c__4);
	    temp = btmp[i__ - 1];
	    btmp[i__ - 1] = btmp[ipsv - 1];
	    btmp[ipsv - 1] = temp;
	}
	if (jpsv != i__) {
	    dswap_(&c__4, &t16[(jpsv << 2) - 4], &c__1, &t16[(i__ << 2) - 4], 
		    &c__1);
	}
	jpiv[i__ - 1] = jpsv;
	if ((d__1 = t16[i__ + (i__ << 2) - 5], abs(d__1)) < smin) {
	    *info = 1;
	    t16[i__ + (i__ << 2) - 5] = smin;
	}
	for (j = i__ + 1; j <= 4; ++j) {
	    t16[j + (i__ << 2) - 5] /= t16[i__ + (i__ << 2) - 5];
	    btmp[j - 1] -= t16[j + (i__ << 2) - 5] * btmp[i__ - 1];
	    for (k = i__ + 1; k <= 4; ++k) {
		t16[j + (k << 2) - 5] -= t16[j + (i__ << 2) - 5] * t16[i__ + (
			k << 2) - 5];
/* L80: */
	    }
/* L90: */
	}
/* L100: */
    }
    if (abs(t16[15]) < smin) {
	t16[15] = smin;
    }
    *scale = 1.;
    if (smlnum * 8. * abs(btmp[0]) > abs(t16[0]) || smlnum * 8. * abs(btmp[1])
	     > abs(t16[5]) || smlnum * 8. * abs(btmp[2]) > abs(t16[10]) || 
	    smlnum * 8. * abs(btmp[3]) > abs(t16[15])) {
/* Computing MAX */
	d__1 = abs(btmp[0]), d__2 = abs(btmp[1]), d__1 = max(d__1,d__2), d__2 
		= abs(btmp[2]), d__1 = max(d__1,d__2), d__2 = abs(btmp[3]);
	*scale = .125 / max(d__1,d__2);
	btmp[0] *= *scale;
	btmp[1] *= *scale;
	btmp[2] *= *scale;
	btmp[3] *= *scale;
    }
    for (i__ = 1; i__ <= 4; ++i__) {
	k = 5 - i__;
	temp = 1. / t16[k + (k << 2) - 5];
	tmp[k - 1] = btmp[k - 1] * temp;
	for (j = k + 1; j <= 4; ++j) {
	    tmp[k - 1] -= temp * t16[k + (j << 2) - 5] * tmp[j - 1];
/* L110: */
	}
/* L120: */
    }
    for (i__ = 1; i__ <= 3; ++i__) {
	if (jpiv[4 - i__ - 1] != 4 - i__) {
	    temp = tmp[4 - i__ - 1];
	    tmp[4 - i__ - 1] = tmp[jpiv[4 - i__ - 1] - 1];
	    tmp[jpiv[4 - i__ - 1] - 1] = temp;
	}
/* L130: */
    }
    x[x_dim1 + 1] = tmp[0];
    x[x_dim1 + 2] = tmp[1];
    x[(x_dim1 << 1) + 1] = tmp[2];
    x[(x_dim1 << 1) + 2] = tmp[3];
/* Computing MAX */
    d__1 = abs(tmp[0]) + abs(tmp[2]), d__2 = abs(tmp[1]) + abs(tmp[3]);
    *xnorm = max(d__1,d__2);
    return 0;

/*     End of DLASY2 */

} /* dlasy2_ */