aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlasd0.c
blob: a8b71971561c5bd2cdddbaf39e83d617645d946c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/* dlasd0.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__0 = 0;
static integer c__2 = 2;

/* Subroutine */ int dlasd0_(integer *n, integer *sqre, doublereal *d__, 
	doublereal *e, doublereal *u, integer *ldu, doublereal *vt, integer *
	ldvt, integer *smlsiz, integer *iwork, doublereal *work, integer *
	info)
{
    /* System generated locals */
    integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;

    /* Builtin functions */
    integer pow_ii(integer *, integer *);

    /* Local variables */
    integer i__, j, m, i1, ic, lf, nd, ll, nl, nr, im1, ncc, nlf, nrf, iwk, 
	    lvl, ndb1, nlp1, nrp1;
    doublereal beta;
    integer idxq, nlvl;
    doublereal alpha;
    integer inode, ndiml, idxqc, ndimr, itemp, sqrei;
    extern /* Subroutine */ int dlasd1_(integer *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
	     doublereal *, integer *, integer *, integer *, doublereal *, 
	    integer *), dlasdq_(char *, integer *, integer *, integer *, 
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *), dlasdt_(integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *), xerbla_(
	    char *, integer *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  Using a divide and conquer approach, DLASD0 computes the singular */
/*  value decomposition (SVD) of a real upper bidiagonal N-by-M */
/*  matrix B with diagonal D and offdiagonal E, where M = N + SQRE. */
/*  The algorithm computes orthogonal matrices U and VT such that */
/*  B = U * S * VT. The singular values S are overwritten on D. */

/*  A related subroutine, DLASDA, computes only the singular values, */
/*  and optionally, the singular vectors in compact form. */

/*  Arguments */
/*  ========= */

/*  N      (input) INTEGER */
/*         On entry, the row dimension of the upper bidiagonal matrix. */
/*         This is also the dimension of the main diagonal array D. */

/*  SQRE   (input) INTEGER */
/*         Specifies the column dimension of the bidiagonal matrix. */
/*         = 0: The bidiagonal matrix has column dimension M = N; */
/*         = 1: The bidiagonal matrix has column dimension M = N+1; */

/*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
/*         On entry D contains the main diagonal of the bidiagonal */
/*         matrix. */
/*         On exit D, if INFO = 0, contains its singular values. */

/*  E      (input) DOUBLE PRECISION array, dimension (M-1) */
/*         Contains the subdiagonal entries of the bidiagonal matrix. */
/*         On exit, E has been destroyed. */

/*  U      (output) DOUBLE PRECISION array, dimension at least (LDQ, N) */
/*         On exit, U contains the left singular vectors. */

/*  LDU    (input) INTEGER */
/*         On entry, leading dimension of U. */

/*  VT     (output) DOUBLE PRECISION array, dimension at least (LDVT, M) */
/*         On exit, VT' contains the right singular vectors. */

/*  LDVT   (input) INTEGER */
/*         On entry, leading dimension of VT. */

/*  SMLSIZ (input) INTEGER */
/*         On entry, maximum size of the subproblems at the */
/*         bottom of the computation tree. */

/*  IWORK  (workspace) INTEGER work array. */
/*         Dimension must be at least (8 * N) */

/*  WORK   (workspace) DOUBLE PRECISION work array. */
/*         Dimension must be at least (3 * M**2 + 2 * M) */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = 1, an singular value did not converge */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Ming Gu and Huan Ren, Computer Science Division, University of */
/*     California at Berkeley, USA */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    vt_dim1 = *ldvt;
    vt_offset = 1 + vt_dim1;
    vt -= vt_offset;
    --iwork;
    --work;

    /* Function Body */
    *info = 0;

    if (*n < 0) {
	*info = -1;
    } else if (*sqre < 0 || *sqre > 1) {
	*info = -2;
    }

    m = *n + *sqre;

    if (*ldu < *n) {
	*info = -6;
    } else if (*ldvt < m) {
	*info = -8;
    } else if (*smlsiz < 3) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLASD0", &i__1);
	return 0;
    }

/*     If the input matrix is too small, call DLASDQ to find the SVD. */

    if (*n <= *smlsiz) {
	dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset], 
		ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], info);
	return 0;
    }

/*     Set up the computation tree. */

    inode = 1;
    ndiml = inode + *n;
    ndimr = ndiml + *n;
    idxq = ndimr + *n;
    iwk = idxq + *n;
    dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], 
	    smlsiz);

/*     For the nodes on bottom level of the tree, solve */
/*     their subproblems by DLASDQ. */

    ndb1 = (nd + 1) / 2;
    ncc = 0;
    i__1 = nd;
    for (i__ = ndb1; i__ <= i__1; ++i__) {

/*     IC : center row of each node */
/*     NL : number of rows of left  subproblem */
/*     NR : number of rows of right subproblem */
/*     NLF: starting row of the left   subproblem */
/*     NRF: starting row of the right  subproblem */

	i1 = i__ - 1;
	ic = iwork[inode + i1];
	nl = iwork[ndiml + i1];
	nlp1 = nl + 1;
	nr = iwork[ndimr + i1];
	nrp1 = nr + 1;
	nlf = ic - nl;
	nrf = ic + 1;
	sqrei = 1;
	dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &vt[
		nlf + nlf * vt_dim1], ldvt, &u[nlf + nlf * u_dim1], ldu, &u[
		nlf + nlf * u_dim1], ldu, &work[1], info);
	if (*info != 0) {
	    return 0;
	}
	itemp = idxq + nlf - 2;
	i__2 = nl;
	for (j = 1; j <= i__2; ++j) {
	    iwork[itemp + j] = j;
/* L10: */
	}
	if (i__ == nd) {
	    sqrei = *sqre;
	} else {
	    sqrei = 1;
	}
	nrp1 = nr + sqrei;
	dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &vt[
		nrf + nrf * vt_dim1], ldvt, &u[nrf + nrf * u_dim1], ldu, &u[
		nrf + nrf * u_dim1], ldu, &work[1], info);
	if (*info != 0) {
	    return 0;
	}
	itemp = idxq + ic;
	i__2 = nr;
	for (j = 1; j <= i__2; ++j) {
	    iwork[itemp + j - 1] = j;
/* L20: */
	}
/* L30: */
    }

/*     Now conquer each subproblem bottom-up. */

    for (lvl = nlvl; lvl >= 1; --lvl) {

/*        Find the first node LF and last node LL on the */
/*        current level LVL. */

	if (lvl == 1) {
	    lf = 1;
	    ll = 1;
	} else {
	    i__1 = lvl - 1;
	    lf = pow_ii(&c__2, &i__1);
	    ll = (lf << 1) - 1;
	}
	i__1 = ll;
	for (i__ = lf; i__ <= i__1; ++i__) {
	    im1 = i__ - 1;
	    ic = iwork[inode + im1];
	    nl = iwork[ndiml + im1];
	    nr = iwork[ndimr + im1];
	    nlf = ic - nl;
	    if (*sqre == 0 && i__ == ll) {
		sqrei = *sqre;
	    } else {
		sqrei = 1;
	    }
	    idxqc = idxq + nlf - 1;
	    alpha = d__[ic];
	    beta = e[ic];
	    dlasd1_(&nl, &nr, &sqrei, &d__[nlf], &alpha, &beta, &u[nlf + nlf *
		     u_dim1], ldu, &vt[nlf + nlf * vt_dim1], ldvt, &iwork[
		    idxqc], &iwork[iwk], &work[1], info);
	    if (*info != 0) {
		return 0;
	    }
/* L40: */
	}
/* L50: */
    }

    return 0;

/*     End of DLASD0 */

} /* dlasd0_ */