aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlascl.c
blob: b39a68b2934932681c2fba8347022ea34efaab3d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/* dlascl.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int dlascl_(char *type__, integer *kl, integer *ku, 
	doublereal *cfrom, doublereal *cto, integer *m, integer *n, 
	doublereal *a, integer *lda, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;

    /* Local variables */
    integer i__, j, k1, k2, k3, k4;
    doublereal mul, cto1;
    logical done;
    doublereal ctoc;
    extern logical lsame_(char *, char *);
    integer itype;
    doublereal cfrom1;
    extern doublereal dlamch_(char *);
    doublereal cfromc;
    extern logical disnan_(doublereal *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal bignum, smlnum;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASCL multiplies the M by N real matrix A by the real scalar */
/*  CTO/CFROM.  This is done without over/underflow as long as the final */
/*  result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */
/*  A may be full, upper triangular, lower triangular, upper Hessenberg, */
/*  or banded. */

/*  Arguments */
/*  ========= */

/*  TYPE    (input) CHARACTER*1 */
/*          TYPE indices the storage type of the input matrix. */
/*          = 'G':  A is a full matrix. */
/*          = 'L':  A is a lower triangular matrix. */
/*          = 'U':  A is an upper triangular matrix. */
/*          = 'H':  A is an upper Hessenberg matrix. */
/*          = 'B':  A is a symmetric band matrix with lower bandwidth KL */
/*                  and upper bandwidth KU and with the only the lower */
/*                  half stored. */
/*          = 'Q':  A is a symmetric band matrix with lower bandwidth KL */
/*                  and upper bandwidth KU and with the only the upper */
/*                  half stored. */
/*          = 'Z':  A is a band matrix with lower bandwidth KL and upper */
/*                  bandwidth KU. */

/*  KL      (input) INTEGER */
/*          The lower bandwidth of A.  Referenced only if TYPE = 'B', */
/*          'Q' or 'Z'. */

/*  KU      (input) INTEGER */
/*          The upper bandwidth of A.  Referenced only if TYPE = 'B', */
/*          'Q' or 'Z'. */

/*  CFROM   (input) DOUBLE PRECISION */
/*  CTO     (input) DOUBLE PRECISION */
/*          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */
/*          without over/underflow if the final result CTO*A(I,J)/CFROM */
/*          can be represented without over/underflow.  CFROM must be */
/*          nonzero. */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          The matrix to be multiplied by CTO/CFROM.  See TYPE for the */
/*          storage type. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  INFO    (output) INTEGER */
/*          0  - successful exit */
/*          <0 - if INFO = -i, the i-th argument had an illegal value. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;

    /* Function Body */
    *info = 0;

    if (lsame_(type__, "G")) {
	itype = 0;
    } else if (lsame_(type__, "L")) {
	itype = 1;
    } else if (lsame_(type__, "U")) {
	itype = 2;
    } else if (lsame_(type__, "H")) {
	itype = 3;
    } else if (lsame_(type__, "B")) {
	itype = 4;
    } else if (lsame_(type__, "Q")) {
	itype = 5;
    } else if (lsame_(type__, "Z")) {
	itype = 6;
    } else {
	itype = -1;
    }

    if (itype == -1) {
	*info = -1;
    } else if (*cfrom == 0. || disnan_(cfrom)) {
	*info = -4;
    } else if (disnan_(cto)) {
	*info = -5;
    } else if (*m < 0) {
	*info = -6;
    } else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) {
	*info = -7;
    } else if (itype <= 3 && *lda < max(1,*m)) {
	*info = -9;
    } else if (itype >= 4) {
/* Computing MAX */
	i__1 = *m - 1;
	if (*kl < 0 || *kl > max(i__1,0)) {
	    *info = -2;
	} else /* if(complicated condition) */ {
/* Computing MAX */
	    i__1 = *n - 1;
	    if (*ku < 0 || *ku > max(i__1,0) || (itype == 4 || itype == 5) && 
		    *kl != *ku) {
		*info = -3;
	    } else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < *
		    ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) {
		*info = -9;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLASCL", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *m == 0) {
	return 0;
    }

/*     Get machine parameters */

    smlnum = dlamch_("S");
    bignum = 1. / smlnum;

    cfromc = *cfrom;
    ctoc = *cto;

L10:
    cfrom1 = cfromc * smlnum;
    if (cfrom1 == cfromc) {
/*        CFROMC is an inf.  Multiply by a correctly signed zero for */
/*        finite CTOC, or a NaN if CTOC is infinite. */
	mul = ctoc / cfromc;
	done = TRUE_;
	cto1 = ctoc;
    } else {
	cto1 = ctoc / bignum;
	if (cto1 == ctoc) {
/*           CTOC is either 0 or an inf.  In both cases, CTOC itself */
/*           serves as the correct multiplication factor. */
	    mul = ctoc;
	    done = TRUE_;
	    cfromc = 1.;
	} else if (abs(cfrom1) > abs(ctoc) && ctoc != 0.) {
	    mul = smlnum;
	    done = FALSE_;
	    cfromc = cfrom1;
	} else if (abs(cto1) > abs(cfromc)) {
	    mul = bignum;
	    done = FALSE_;
	    ctoc = cto1;
	} else {
	    mul = ctoc / cfromc;
	    done = TRUE_;
	}
    }

    if (itype == 0) {

/*        Full matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L20: */
	    }
/* L30: */
	}

    } else if (itype == 1) {

/*        Lower triangular matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (i__ = j; i__ <= i__2; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L40: */
	    }
/* L50: */
	}

    } else if (itype == 2) {

/*        Upper triangular matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = min(j,*m);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L60: */
	    }
/* L70: */
	}

    } else if (itype == 3) {

/*        Upper Hessenberg matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
	    i__3 = j + 1;
	    i__2 = min(i__3,*m);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L80: */
	    }
/* L90: */
	}

    } else if (itype == 4) {

/*        Lower half of a symmetric band matrix */

	k3 = *kl + 1;
	k4 = *n + 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
	    i__3 = k3, i__4 = k4 - j;
	    i__2 = min(i__3,i__4);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L100: */
	    }
/* L110: */
	}

    } else if (itype == 5) {

/*        Upper half of a symmetric band matrix */

	k1 = *ku + 2;
	k3 = *ku + 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    i__2 = k1 - j;
	    i__3 = k3;
	    for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L120: */
	    }
/* L130: */
	}

    } else if (itype == 6) {

/*        Band matrix */

	k1 = *kl + *ku + 2;
	k2 = *kl + 1;
	k3 = (*kl << 1) + *ku + 1;
	k4 = *kl + *ku + 1 + *m;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    i__3 = k1 - j;
/* Computing MIN */
	    i__4 = k3, i__5 = k4 - j;
	    i__2 = min(i__4,i__5);
	    for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L140: */
	    }
/* L150: */
	}

    }

    if (! done) {
	goto L10;
    }

    return 0;

/*     End of DLASCL */

} /* dlascl_ */