aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlarrr.c
blob: adb0133974aae6c6d8e1ee6b454209a6fc4ceb7f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/* dlarrr.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int dlarrr_(integer *n, doublereal *d__, doublereal *e, 
	integer *info)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__;
    doublereal eps, tmp, tmp2, rmin;
    extern doublereal dlamch_(char *);
    doublereal offdig, safmin;
    logical yesrel;
    doublereal smlnum, offdig2;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */


/*  Purpose */
/*  ======= */

/*  Perform tests to decide whether the symmetric tridiagonal matrix T */
/*  warrants expensive computations which guarantee high relative accuracy */
/*  in the eigenvalues. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix. N > 0. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The N diagonal elements of the tridiagonal matrix T. */

/*  E       (input/output) DOUBLE PRECISION array, dimension (N) */
/*          On entry, the first (N-1) entries contain the subdiagonal */
/*          elements of the tridiagonal matrix T; E(N) is set to ZERO. */

/*  INFO    (output) INTEGER */
/*          INFO = 0(default) : the matrix warrants computations preserving */
/*                              relative accuracy. */
/*          INFO = 1          : the matrix warrants computations guaranteeing */
/*                              only absolute accuracy. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Beresford Parlett, University of California, Berkeley, USA */
/*     Jim Demmel, University of California, Berkeley, USA */
/*     Inderjit Dhillon, University of Texas, Austin, USA */
/*     Osni Marques, LBNL/NERSC, USA */
/*     Christof Voemel, University of California, Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     As a default, do NOT go for relative-accuracy preserving computations. */
    /* Parameter adjustments */
    --e;
    --d__;

    /* Function Body */
    *info = 1;
    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    rmin = sqrt(smlnum);
/*     Tests for relative accuracy */

/*     Test for scaled diagonal dominance */
/*     Scale the diagonal entries to one and check whether the sum of the */
/*     off-diagonals is less than one */

/*     The sdd relative error bounds have a 1/(1- 2*x) factor in them, */
/*     x = max(OFFDIG + OFFDIG2), so when x is close to 1/2, no relative */
/*     accuracy is promised.  In the notation of the code fragment below, */
/*     1/(1 - (OFFDIG + OFFDIG2)) is the condition number. */
/*     We don't think it is worth going into "sdd mode" unless the relative */
/*     condition number is reasonable, not 1/macheps. */
/*     The threshold should be compatible with other thresholds used in the */
/*     code. We set  OFFDIG + OFFDIG2 <= .999 =: RELCOND, it corresponds */
/*     to losing at most 3 decimal digits: 1 / (1 - (OFFDIG + OFFDIG2)) <= 1000 */
/*     instead of the current OFFDIG + OFFDIG2 < 1 */

    yesrel = TRUE_;
    offdig = 0.;
    tmp = sqrt((abs(d__[1])));
    if (tmp < rmin) {
	yesrel = FALSE_;
    }
    if (! yesrel) {
	goto L11;
    }
    i__1 = *n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	tmp2 = sqrt((d__1 = d__[i__], abs(d__1)));
	if (tmp2 < rmin) {
	    yesrel = FALSE_;
	}
	if (! yesrel) {
	    goto L11;
	}
	offdig2 = (d__1 = e[i__ - 1], abs(d__1)) / (tmp * tmp2);
	if (offdig + offdig2 >= .999) {
	    yesrel = FALSE_;
	}
	if (! yesrel) {
	    goto L11;
	}
	tmp = tmp2;
	offdig = offdig2;
/* L10: */
    }
L11:
    if (yesrel) {
	*info = 0;
	return 0;
    } else {
    }


/*     *** MORE TO BE IMPLEMENTED *** */


/*     Test if the lower bidiagonal matrix L from T = L D L^T */
/*     (zero shift facto) is well conditioned */


/*     Test if the upper bidiagonal matrix U from T = U D U^T */
/*     (zero shift facto) is well conditioned. */
/*     In this case, the matrix needs to be flipped and, at the end */
/*     of the eigenvector computation, the flip needs to be applied */
/*     to the computed eigenvectors (and the support) */


    return 0;

/*     END OF DLARRR */

} /* dlarrr_ */