1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
/* dlarfp.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int dlarfp_(integer *n, doublereal *alpha, doublereal *x,
integer *incx, doublereal *tau)
{
/* System generated locals */
integer i__1;
doublereal d__1;
/* Builtin functions */
double d_sign(doublereal *, doublereal *);
/* Local variables */
integer j, knt;
doublereal beta;
extern doublereal dnrm2_(integer *, doublereal *, integer *);
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
doublereal xnorm;
extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
doublereal safmin, rsafmn;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DLARFP generates a real elementary reflector H of order n, such */
/* that */
/* H * ( alpha ) = ( beta ), H' * H = I. */
/* ( x ) ( 0 ) */
/* where alpha and beta are scalars, beta is non-negative, and x is */
/* an (n-1)-element real vector. H is represented in the form */
/* H = I - tau * ( 1 ) * ( 1 v' ) , */
/* ( v ) */
/* where tau is a real scalar and v is a real (n-1)-element */
/* vector. */
/* If the elements of x are all zero, then tau = 0 and H is taken to be */
/* the unit matrix. */
/* Otherwise 1 <= tau <= 2. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the elementary reflector. */
/* ALPHA (input/output) DOUBLE PRECISION */
/* On entry, the value alpha. */
/* On exit, it is overwritten with the value beta. */
/* X (input/output) DOUBLE PRECISION array, dimension */
/* (1+(N-2)*abs(INCX)) */
/* On entry, the vector x. */
/* On exit, it is overwritten with the vector v. */
/* INCX (input) INTEGER */
/* The increment between elements of X. INCX > 0. */
/* TAU (output) DOUBLE PRECISION */
/* The value tau. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--x;
/* Function Body */
if (*n <= 0) {
*tau = 0.;
return 0;
}
i__1 = *n - 1;
xnorm = dnrm2_(&i__1, &x[1], incx);
if (xnorm == 0.) {
/* H = [+/-1, 0; I], sign chosen so ALPHA >= 0 */
if (*alpha >= 0.) {
/* When TAU.eq.ZERO, the vector is special-cased to be */
/* all zeros in the application routines. We do not need */
/* to clear it. */
*tau = 0.;
} else {
/* However, the application routines rely on explicit */
/* zero checks when TAU.ne.ZERO, and we must clear X. */
*tau = 2.;
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
x[(j - 1) * *incx + 1] = 0.;
}
*alpha = -(*alpha);
}
} else {
/* general case */
d__1 = dlapy2_(alpha, &xnorm);
beta = d_sign(&d__1, alpha);
safmin = dlamch_("S") / dlamch_("E");
knt = 0;
if (abs(beta) < safmin) {
/* XNORM, BETA may be inaccurate; scale X and recompute them */
rsafmn = 1. / safmin;
L10:
++knt;
i__1 = *n - 1;
dscal_(&i__1, &rsafmn, &x[1], incx);
beta *= rsafmn;
*alpha *= rsafmn;
if (abs(beta) < safmin) {
goto L10;
}
/* New BETA is at most 1, at least SAFMIN */
i__1 = *n - 1;
xnorm = dnrm2_(&i__1, &x[1], incx);
d__1 = dlapy2_(alpha, &xnorm);
beta = d_sign(&d__1, alpha);
}
*alpha += beta;
if (beta < 0.) {
beta = -beta;
*tau = -(*alpha) / beta;
} else {
*alpha = xnorm * (xnorm / *alpha);
*tau = *alpha / beta;
*alpha = -(*alpha);
}
i__1 = *n - 1;
d__1 = 1. / *alpha;
dscal_(&i__1, &d__1, &x[1], incx);
/* If BETA is subnormal, it may lose relative accuracy */
i__1 = knt;
for (j = 1; j <= i__1; ++j) {
beta *= safmin;
/* L20: */
}
*alpha = beta;
}
return 0;
/* End of DLARFP */
} /* dlarfp_ */
|