1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
/* dlagtm.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int dlagtm_(char *trans, integer *n, integer *nrhs,
doublereal *alpha, doublereal *dl, doublereal *d__, doublereal *du,
doublereal *x, integer *ldx, doublereal *beta, doublereal *b, integer
*ldb)
{
/* System generated locals */
integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
/* Local variables */
integer i__, j;
extern logical lsame_(char *, char *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DLAGTM performs a matrix-vector product of the form */
/* B := alpha * A * X + beta * B */
/* where A is a tridiagonal matrix of order N, B and X are N by NRHS */
/* matrices, and alpha and beta are real scalars, each of which may be */
/* 0., 1., or -1. */
/* Arguments */
/* ========= */
/* TRANS (input) CHARACTER*1 */
/* Specifies the operation applied to A. */
/* = 'N': No transpose, B := alpha * A * X + beta * B */
/* = 'T': Transpose, B := alpha * A'* X + beta * B */
/* = 'C': Conjugate transpose = Transpose */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrices X and B. */
/* ALPHA (input) DOUBLE PRECISION */
/* The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, */
/* it is assumed to be 0. */
/* DL (input) DOUBLE PRECISION array, dimension (N-1) */
/* The (n-1) sub-diagonal elements of T. */
/* D (input) DOUBLE PRECISION array, dimension (N) */
/* The diagonal elements of T. */
/* DU (input) DOUBLE PRECISION array, dimension (N-1) */
/* The (n-1) super-diagonal elements of T. */
/* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */
/* The N by NRHS matrix X. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X. LDX >= max(N,1). */
/* BETA (input) DOUBLE PRECISION */
/* The scalar beta. BETA must be 0., 1., or -1.; otherwise, */
/* it is assumed to be 1. */
/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/* On entry, the N by NRHS matrix B. */
/* On exit, B is overwritten by the matrix expression */
/* B := alpha * A * X + beta * B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(N,1). */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--dl;
--d__;
--du;
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
if (*n == 0) {
return 0;
}
/* Multiply B by BETA if BETA.NE.1. */
if (*beta == 0.) {
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] = 0.;
/* L10: */
}
/* L20: */
}
} else if (*beta == -1.) {
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] = -b[i__ + j * b_dim1];
/* L30: */
}
/* L40: */
}
}
if (*alpha == 1.) {
if (lsame_(trans, "N")) {
/* Compute B := B + A*X */
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
if (*n == 1) {
b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1];
} else {
b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j *
x_dim1 + 1] + du[1] * x[j * x_dim1 + 2];
b[*n + j * b_dim1] = b[*n + j * b_dim1] + dl[*n - 1] * x[*
n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]
;
i__2 = *n - 1;
for (i__ = 2; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + dl[i__ -
1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[
i__ + j * x_dim1] + du[i__] * x[i__ + 1 + j *
x_dim1];
/* L50: */
}
}
/* L60: */
}
} else {
/* Compute B := B + A'*X */
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
if (*n == 1) {
b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1];
} else {
b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j *
x_dim1 + 1] + dl[1] * x[j * x_dim1 + 2];
b[*n + j * b_dim1] = b[*n + j * b_dim1] + du[*n - 1] * x[*
n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]
;
i__2 = *n - 1;
for (i__ = 2; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + du[i__ -
1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[
i__ + j * x_dim1] + dl[i__] * x[i__ + 1 + j *
x_dim1];
/* L70: */
}
}
/* L80: */
}
}
} else if (*alpha == -1.) {
if (lsame_(trans, "N")) {
/* Compute B := B - A*X */
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
if (*n == 1) {
b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1];
} else {
b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j *
x_dim1 + 1] - du[1] * x[j * x_dim1 + 2];
b[*n + j * b_dim1] = b[*n + j * b_dim1] - dl[*n - 1] * x[*
n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]
;
i__2 = *n - 1;
for (i__ = 2; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - dl[i__ -
1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[
i__ + j * x_dim1] - du[i__] * x[i__ + 1 + j *
x_dim1];
/* L90: */
}
}
/* L100: */
}
} else {
/* Compute B := B - A'*X */
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
if (*n == 1) {
b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1];
} else {
b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j *
x_dim1 + 1] - dl[1] * x[j * x_dim1 + 2];
b[*n + j * b_dim1] = b[*n + j * b_dim1] - du[*n - 1] * x[*
n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]
;
i__2 = *n - 1;
for (i__ = 2; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - du[i__ -
1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[
i__ + j * x_dim1] - dl[i__] * x[i__ + 1 + j *
x_dim1];
/* L110: */
}
}
/* L120: */
}
}
}
return 0;
/* End of DLAGTM */
} /* dlagtm_ */
|