aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlagtf.c
blob: 533f53d436f95e89e2fb8d3fcd7eef4ea62bcd02 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/* dlagtf.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int dlagtf_(integer *n, doublereal *a, doublereal *lambda, 
	doublereal *b, doublereal *c__, doublereal *tol, doublereal *d__, 
	integer *in, integer *info)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer k;
    doublereal tl, eps, piv1, piv2, temp, mult, scale1, scale2;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n */
/*  tridiagonal matrix and lambda is a scalar, as */

/*     T - lambda*I = PLU, */

/*  where P is a permutation matrix, L is a unit lower tridiagonal matrix */
/*  with at most one non-zero sub-diagonal elements per column and U is */
/*  an upper triangular matrix with at most two non-zero super-diagonal */
/*  elements per column. */

/*  The factorization is obtained by Gaussian elimination with partial */
/*  pivoting and implicit row scaling. */

/*  The parameter LAMBDA is included in the routine so that DLAGTF may */
/*  be used, in conjunction with DLAGTS, to obtain eigenvectors of T by */
/*  inverse iteration. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix T. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (N) */
/*          On entry, A must contain the diagonal elements of T. */

/*          On exit, A is overwritten by the n diagonal elements of the */
/*          upper triangular matrix U of the factorization of T. */

/*  LAMBDA  (input) DOUBLE PRECISION */
/*          On entry, the scalar lambda. */

/*  B       (input/output) DOUBLE PRECISION array, dimension (N-1) */
/*          On entry, B must contain the (n-1) super-diagonal elements of */
/*          T. */

/*          On exit, B is overwritten by the (n-1) super-diagonal */
/*          elements of the matrix U of the factorization of T. */

/*  C       (input/output) DOUBLE PRECISION array, dimension (N-1) */
/*          On entry, C must contain the (n-1) sub-diagonal elements of */
/*          T. */

/*          On exit, C is overwritten by the (n-1) sub-diagonal elements */
/*          of the matrix L of the factorization of T. */

/*  TOL     (input) DOUBLE PRECISION */
/*          On entry, a relative tolerance used to indicate whether or */
/*          not the matrix (T - lambda*I) is nearly singular. TOL should */
/*          normally be chose as approximately the largest relative error */
/*          in the elements of T. For example, if the elements of T are */
/*          correct to about 4 significant figures, then TOL should be */
/*          set to about 5*10**(-4). If TOL is supplied as less than eps, */
/*          where eps is the relative machine precision, then the value */
/*          eps is used in place of TOL. */

/*  D       (output) DOUBLE PRECISION array, dimension (N-2) */
/*          On exit, D is overwritten by the (n-2) second super-diagonal */
/*          elements of the matrix U of the factorization of T. */

/*  IN      (output) INTEGER array, dimension (N) */
/*          On exit, IN contains details of the permutation matrix P. If */
/*          an interchange occurred at the kth step of the elimination, */
/*          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n) */
/*          returns the smallest positive integer j such that */

/*             abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL, */

/*          where norm( A(j) ) denotes the sum of the absolute values of */
/*          the jth row of the matrix A. If no such j exists then IN(n) */
/*          is returned as zero. If IN(n) is returned as positive, then a */
/*          diagonal element of U is small, indicating that */
/*          (T - lambda*I) is singular or nearly singular, */

/*  INFO    (output) INTEGER */
/*          = 0   : successful exit */
/*          .lt. 0: if INFO = -k, the kth argument had an illegal value */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --in;
    --d__;
    --c__;
    --b;
    --a;

    /* Function Body */
    *info = 0;
    if (*n < 0) {
	*info = -1;
	i__1 = -(*info);
	xerbla_("DLAGTF", &i__1);
	return 0;
    }

    if (*n == 0) {
	return 0;
    }

    a[1] -= *lambda;
    in[*n] = 0;
    if (*n == 1) {
	if (a[1] == 0.) {
	    in[1] = 1;
	}
	return 0;
    }

    eps = dlamch_("Epsilon");

    tl = max(*tol,eps);
    scale1 = abs(a[1]) + abs(b[1]);
    i__1 = *n - 1;
    for (k = 1; k <= i__1; ++k) {
	a[k + 1] -= *lambda;
	scale2 = (d__1 = c__[k], abs(d__1)) + (d__2 = a[k + 1], abs(d__2));
	if (k < *n - 1) {
	    scale2 += (d__1 = b[k + 1], abs(d__1));
	}
	if (a[k] == 0.) {
	    piv1 = 0.;
	} else {
	    piv1 = (d__1 = a[k], abs(d__1)) / scale1;
	}
	if (c__[k] == 0.) {
	    in[k] = 0;
	    piv2 = 0.;
	    scale1 = scale2;
	    if (k < *n - 1) {
		d__[k] = 0.;
	    }
	} else {
	    piv2 = (d__1 = c__[k], abs(d__1)) / scale2;
	    if (piv2 <= piv1) {
		in[k] = 0;
		scale1 = scale2;
		c__[k] /= a[k];
		a[k + 1] -= c__[k] * b[k];
		if (k < *n - 1) {
		    d__[k] = 0.;
		}
	    } else {
		in[k] = 1;
		mult = a[k] / c__[k];
		a[k] = c__[k];
		temp = a[k + 1];
		a[k + 1] = b[k] - mult * temp;
		if (k < *n - 1) {
		    d__[k] = b[k + 1];
		    b[k + 1] = -mult * d__[k];
		}
		b[k] = temp;
		c__[k] = mult;
	    }
	}
	if (max(piv1,piv2) <= tl && in[*n] == 0) {
	    in[*n] = k;
	}
/* L10: */
    }
    if ((d__1 = a[*n], abs(d__1)) <= scale1 * tl && in[*n] == 0) {
	in[*n] = *n;
    }

    return 0;

/*     End of DLAGTF */

} /* dlagtf_ */