aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlacpy.c
blob: 9fff49569cae277680d27ef1fbccc95658e84007 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/* dlacpy.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int dlacpy_(char *uplo, integer *m, integer *n, doublereal *
	a, integer *lda, doublereal *b, integer *ldb)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;

    /* Local variables */
    integer i__, j;
    extern logical lsame_(char *, char *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLACPY copies all or part of a two-dimensional matrix A to another */
/*  matrix B. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies the part of the matrix A to be copied to B. */
/*          = 'U':      Upper triangular part */
/*          = 'L':      Lower triangular part */
/*          Otherwise:  All of the matrix A */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
/*          The m by n matrix A.  If UPLO = 'U', only the upper triangle */
/*          or trapezoid is accessed; if UPLO = 'L', only the lower */
/*          triangle or trapezoid is accessed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  B       (output) DOUBLE PRECISION array, dimension (LDB,N) */
/*          On exit, B = A in the locations specified by UPLO. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,M). */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    if (lsame_(uplo, "U")) {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = min(j,*m);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		b[i__ + j * b_dim1] = a[i__ + j * a_dim1];
/* L10: */
	    }
/* L20: */
	}
    } else if (lsame_(uplo, "L")) {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (i__ = j; i__ <= i__2; ++i__) {
		b[i__ + j * b_dim1] = a[i__ + j * a_dim1];
/* L30: */
	    }
/* L40: */
	}
    } else {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		b[i__ + j * b_dim1] = a[i__ + j * a_dim1];
/* L50: */
	    }
/* L60: */
	}
    }
    return 0;

/*     End of DLACPY */

} /* dlacpy_ */