1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
/* dla_gbrpvgrw.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
doublereal dla_gbrpvgrw__(integer *n, integer *kl, integer *ku, integer *
ncols, doublereal *ab, integer *ldab, doublereal *afb, integer *ldafb)
{
/* System generated locals */
integer ab_dim1, ab_offset, afb_dim1, afb_offset, i__1, i__2, i__3, i__4;
doublereal ret_val, d__1, d__2;
/* Local variables */
integer i__, j, kd;
doublereal amax, umax, rpvgrw;
/* -- LAPACK routine (version 3.2.1) -- */
/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/* -- Jason Riedy of Univ. of California Berkeley. -- */
/* -- April 2009 -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley and NAG Ltd. -- */
/* .. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DLA_GBRPVGRW computes the reciprocal pivot growth factor */
/* norm(A)/norm(U). The "max absolute element" norm is used. If this is */
/* much less than 1, the stability of the LU factorization of the */
/* (equilibrated) matrix A could be poor. This also means that the */
/* solution X, estimated condition numbers, and error bounds could be */
/* unreliable. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* KL (input) INTEGER */
/* The number of subdiagonals within the band of A. KL >= 0. */
/* KU (input) INTEGER */
/* The number of superdiagonals within the band of A. KU >= 0. */
/* NCOLS (input) INTEGER */
/* The number of columns of the matrix A. NCOLS >= 0. */
/* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */
/* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
/* The j-th column of A is stored in the j-th column of the */
/* array AB as follows: */
/* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= KL+KU+1. */
/* AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N) */
/* Details of the LU factorization of the band matrix A, as */
/* computed by DGBTRF. U is stored as an upper triangular */
/* band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
/* and the multipliers used during the factorization are stored */
/* in rows KL+KU+2 to 2*KL+KU+1. */
/* LDAFB (input) INTEGER */
/* The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
afb_dim1 = *ldafb;
afb_offset = 1 + afb_dim1;
afb -= afb_offset;
/* Function Body */
rpvgrw = 1.;
kd = *ku + 1;
i__1 = *ncols;
for (j = 1; j <= i__1; ++j) {
amax = 0.;
umax = 0.;
/* Computing MAX */
i__2 = j - *ku;
/* Computing MIN */
i__4 = j + *kl;
i__3 = min(i__4,*n);
for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
/* Computing MAX */
d__2 = (d__1 = ab[kd + i__ - j + j * ab_dim1], abs(d__1));
amax = max(d__2,amax);
}
/* Computing MAX */
i__3 = j - *ku;
i__2 = j;
for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
/* Computing MAX */
d__2 = (d__1 = afb[kd + i__ - j + j * afb_dim1], abs(d__1));
umax = max(d__2,umax);
}
if (umax != 0.) {
/* Computing MIN */
d__1 = amax / umax;
rpvgrw = min(d__1,rpvgrw);
}
}
ret_val = rpvgrw;
return ret_val;
} /* dla_gbrpvgrw__ */
|