1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
|
/* dhgeqz.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static doublereal c_b12 = 0.;
static doublereal c_b13 = 1.;
static integer c__1 = 1;
static integer c__3 = 3;
/* Subroutine */ int dhgeqz_(char *job, char *compq, char *compz, integer *n,
integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal
*t, integer *ldt, doublereal *alphar, doublereal *alphai, doublereal *
beta, doublereal *q, integer *ldq, doublereal *z__, integer *ldz,
doublereal *work, integer *lwork, integer *info)
{
/* System generated locals */
integer h_dim1, h_offset, q_dim1, q_offset, t_dim1, t_offset, z_dim1,
z_offset, i__1, i__2, i__3, i__4;
doublereal d__1, d__2, d__3, d__4;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
doublereal c__;
integer j;
doublereal s, v[3], s1, s2, t1, u1, u2, a11, a12, a21, a22, b11, b22, c12,
c21;
integer jc;
doublereal an, bn, cl, cq, cr;
integer in;
doublereal u12, w11, w12, w21;
integer jr;
doublereal cz, w22, sl, wi, sr, vs, wr, b1a, b2a, a1i, a2i, b1i, b2i, a1r,
a2r, b1r, b2r, wr2, ad11, ad12, ad21, ad22, c11i, c22i;
integer jch;
doublereal c11r, c22r;
logical ilq;
doublereal u12l, tau, sqi;
logical ilz;
doublereal ulp, sqr, szi, szr, ad11l, ad12l, ad21l, ad22l, ad32l, wabs,
atol, btol, temp;
extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *), dlag2_(
doublereal *, integer *, doublereal *, integer *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *);
doublereal temp2, s1inv, scale;
extern logical lsame_(char *, char *);
integer iiter, ilast, jiter;
doublereal anorm, bnorm;
integer maxit;
doublereal tempi, tempr;
extern doublereal dlapy2_(doublereal *, doublereal *), dlapy3_(doublereal
*, doublereal *, doublereal *);
extern /* Subroutine */ int dlasv2_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *);
logical ilazr2;
doublereal ascale, bscale;
extern doublereal dlamch_(char *);
extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
integer *, doublereal *);
extern doublereal dlanhs_(char *, integer *, doublereal *, integer *,
doublereal *);
extern /* Subroutine */ int dlaset_(char *, integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *);
doublereal safmin;
extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *);
doublereal safmax;
extern /* Subroutine */ int xerbla_(char *, integer *);
doublereal eshift;
logical ilschr;
integer icompq, ilastm, ischur;
logical ilazro;
integer icompz, ifirst, ifrstm, istart;
logical ilpivt, lquery;
/* -- LAPACK routine (version 3.2.1) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* -- April 2009 -- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DHGEQZ computes the eigenvalues of a real matrix pair (H,T), */
/* where H is an upper Hessenberg matrix and T is upper triangular, */
/* using the double-shift QZ method. */
/* Matrix pairs of this type are produced by the reduction to */
/* generalized upper Hessenberg form of a real matrix pair (A,B): */
/* A = Q1*H*Z1**T, B = Q1*T*Z1**T, */
/* as computed by DGGHRD. */
/* If JOB='S', then the Hessenberg-triangular pair (H,T) is */
/* also reduced to generalized Schur form, */
/* H = Q*S*Z**T, T = Q*P*Z**T, */
/* where Q and Z are orthogonal matrices, P is an upper triangular */
/* matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2 */
/* diagonal blocks. */
/* The 1-by-1 blocks correspond to real eigenvalues of the matrix pair */
/* (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of */
/* eigenvalues. */
/* Additionally, the 2-by-2 upper triangular diagonal blocks of P */
/* corresponding to 2-by-2 blocks of S are reduced to positive diagonal */
/* form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0, */
/* P(j,j) > 0, and P(j+1,j+1) > 0. */
/* Optionally, the orthogonal matrix Q from the generalized Schur */
/* factorization may be postmultiplied into an input matrix Q1, and the */
/* orthogonal matrix Z may be postmultiplied into an input matrix Z1. */
/* If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced */
/* the matrix pair (A,B) to generalized upper Hessenberg form, then the */
/* output matrices Q1*Q and Z1*Z are the orthogonal factors from the */
/* generalized Schur factorization of (A,B): */
/* A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T. */
/* To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, */
/* of (A,B)) are computed as a pair of values (alpha,beta), where alpha is */
/* complex and beta real. */
/* If beta is nonzero, lambda = alpha / beta is an eigenvalue of the */
/* generalized nonsymmetric eigenvalue problem (GNEP) */
/* A*x = lambda*B*x */
/* and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the */
/* alternate form of the GNEP */
/* mu*A*y = B*y. */
/* Real eigenvalues can be read directly from the generalized Schur */
/* form: */
/* alpha = S(i,i), beta = P(i,i). */
/* Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix */
/* Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), */
/* pp. 241--256. */
/* Arguments */
/* ========= */
/* JOB (input) CHARACTER*1 */
/* = 'E': Compute eigenvalues only; */
/* = 'S': Compute eigenvalues and the Schur form. */
/* COMPQ (input) CHARACTER*1 */
/* = 'N': Left Schur vectors (Q) are not computed; */
/* = 'I': Q is initialized to the unit matrix and the matrix Q */
/* of left Schur vectors of (H,T) is returned; */
/* = 'V': Q must contain an orthogonal matrix Q1 on entry and */
/* the product Q1*Q is returned. */
/* COMPZ (input) CHARACTER*1 */
/* = 'N': Right Schur vectors (Z) are not computed; */
/* = 'I': Z is initialized to the unit matrix and the matrix Z */
/* of right Schur vectors of (H,T) is returned; */
/* = 'V': Z must contain an orthogonal matrix Z1 on entry and */
/* the product Z1*Z is returned. */
/* N (input) INTEGER */
/* The order of the matrices H, T, Q, and Z. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* ILO and IHI mark the rows and columns of H which are in */
/* Hessenberg form. It is assumed that A is already upper */
/* triangular in rows and columns 1:ILO-1 and IHI+1:N. */
/* If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. */
/* H (input/output) DOUBLE PRECISION array, dimension (LDH, N) */
/* On entry, the N-by-N upper Hessenberg matrix H. */
/* On exit, if JOB = 'S', H contains the upper quasi-triangular */
/* matrix S from the generalized Schur factorization; */
/* 2-by-2 diagonal blocks (corresponding to complex conjugate */
/* pairs of eigenvalues) are returned in standard form, with */
/* H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. */
/* If JOB = 'E', the diagonal blocks of H match those of S, but */
/* the rest of H is unspecified. */
/* LDH (input) INTEGER */
/* The leading dimension of the array H. LDH >= max( 1, N ). */
/* T (input/output) DOUBLE PRECISION array, dimension (LDT, N) */
/* On entry, the N-by-N upper triangular matrix T. */
/* On exit, if JOB = 'S', T contains the upper triangular */
/* matrix P from the generalized Schur factorization; */
/* 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S */
/* are reduced to positive diagonal form, i.e., if H(j+1,j) is */
/* non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and */
/* T(j+1,j+1) > 0. */
/* If JOB = 'E', the diagonal blocks of T match those of P, but */
/* the rest of T is unspecified. */
/* LDT (input) INTEGER */
/* The leading dimension of the array T. LDT >= max( 1, N ). */
/* ALPHAR (output) DOUBLE PRECISION array, dimension (N) */
/* The real parts of each scalar alpha defining an eigenvalue */
/* of GNEP. */
/* ALPHAI (output) DOUBLE PRECISION array, dimension (N) */
/* The imaginary parts of each scalar alpha defining an */
/* eigenvalue of GNEP. */
/* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
/* positive, then the j-th and (j+1)-st eigenvalues are a */
/* complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j). */
/* BETA (output) DOUBLE PRECISION array, dimension (N) */
/* The scalars beta that define the eigenvalues of GNEP. */
/* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
/* beta = BETA(j) represent the j-th eigenvalue of the matrix */
/* pair (A,B), in one of the forms lambda = alpha/beta or */
/* mu = beta/alpha. Since either lambda or mu may overflow, */
/* they should not, in general, be computed. */
/* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
/* On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in */
/* the reduction of (A,B) to generalized Hessenberg form. */
/* On exit, if COMPZ = 'I', the orthogonal matrix of left Schur */
/* vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix */
/* of left Schur vectors of (A,B). */
/* Not referenced if COMPZ = 'N'. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. LDQ >= 1. */
/* If COMPQ='V' or 'I', then LDQ >= N. */
/* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */
/* On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in */
/* the reduction of (A,B) to generalized Hessenberg form. */
/* On exit, if COMPZ = 'I', the orthogonal matrix of */
/* right Schur vectors of (H,T), and if COMPZ = 'V', the */
/* orthogonal matrix of right Schur vectors of (A,B). */
/* Not referenced if COMPZ = 'N'. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1. */
/* If COMPZ='V' or 'I', then LDZ >= N. */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= max(1,N). */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* = 1,...,N: the QZ iteration did not converge. (H,T) is not */
/* in Schur form, but ALPHAR(i), ALPHAI(i), and */
/* BETA(i), i=INFO+1,...,N should be correct. */
/* = N+1,...,2*N: the shift calculation failed. (H,T) is not */
/* in Schur form, but ALPHAR(i), ALPHAI(i), and */
/* BETA(i), i=INFO-N+1,...,N should be correct. */
/* Further Details */
/* =============== */
/* Iteration counters: */
/* JITER -- counts iterations. */
/* IITER -- counts iterations run since ILAST was last */
/* changed. This is therefore reset only when a 1-by-1 or */
/* 2-by-2 block deflates off the bottom. */
/* ===================================================================== */
/* .. Parameters .. */
/* $ SAFETY = 1.0E+0 ) */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Decode JOB, COMPQ, COMPZ */
/* Parameter adjustments */
h_dim1 = *ldh;
h_offset = 1 + h_dim1;
h__ -= h_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
--alphar;
--alphai;
--beta;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
/* Function Body */
if (lsame_(job, "E")) {
ilschr = FALSE_;
ischur = 1;
} else if (lsame_(job, "S")) {
ilschr = TRUE_;
ischur = 2;
} else {
ischur = 0;
}
if (lsame_(compq, "N")) {
ilq = FALSE_;
icompq = 1;
} else if (lsame_(compq, "V")) {
ilq = TRUE_;
icompq = 2;
} else if (lsame_(compq, "I")) {
ilq = TRUE_;
icompq = 3;
} else {
icompq = 0;
}
if (lsame_(compz, "N")) {
ilz = FALSE_;
icompz = 1;
} else if (lsame_(compz, "V")) {
ilz = TRUE_;
icompz = 2;
} else if (lsame_(compz, "I")) {
ilz = TRUE_;
icompz = 3;
} else {
icompz = 0;
}
/* Check Argument Values */
*info = 0;
work[1] = (doublereal) max(1,*n);
lquery = *lwork == -1;
if (ischur == 0) {
*info = -1;
} else if (icompq == 0) {
*info = -2;
} else if (icompz == 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*ilo < 1) {
*info = -5;
} else if (*ihi > *n || *ihi < *ilo - 1) {
*info = -6;
} else if (*ldh < *n) {
*info = -8;
} else if (*ldt < *n) {
*info = -10;
} else if (*ldq < 1 || ilq && *ldq < *n) {
*info = -15;
} else if (*ldz < 1 || ilz && *ldz < *n) {
*info = -17;
} else if (*lwork < max(1,*n) && ! lquery) {
*info = -19;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DHGEQZ", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n <= 0) {
work[1] = 1.;
return 0;
}
/* Initialize Q and Z */
if (icompq == 3) {
dlaset_("Full", n, n, &c_b12, &c_b13, &q[q_offset], ldq);
}
if (icompz == 3) {
dlaset_("Full", n, n, &c_b12, &c_b13, &z__[z_offset], ldz);
}
/* Machine Constants */
in = *ihi + 1 - *ilo;
safmin = dlamch_("S");
safmax = 1. / safmin;
ulp = dlamch_("E") * dlamch_("B");
anorm = dlanhs_("F", &in, &h__[*ilo + *ilo * h_dim1], ldh, &work[1]);
bnorm = dlanhs_("F", &in, &t[*ilo + *ilo * t_dim1], ldt, &work[1]);
/* Computing MAX */
d__1 = safmin, d__2 = ulp * anorm;
atol = max(d__1,d__2);
/* Computing MAX */
d__1 = safmin, d__2 = ulp * bnorm;
btol = max(d__1,d__2);
ascale = 1. / max(safmin,anorm);
bscale = 1. / max(safmin,bnorm);
/* Set Eigenvalues IHI+1:N */
i__1 = *n;
for (j = *ihi + 1; j <= i__1; ++j) {
if (t[j + j * t_dim1] < 0.) {
if (ilschr) {
i__2 = j;
for (jr = 1; jr <= i__2; ++jr) {
h__[jr + j * h_dim1] = -h__[jr + j * h_dim1];
t[jr + j * t_dim1] = -t[jr + j * t_dim1];
/* L10: */
}
} else {
h__[j + j * h_dim1] = -h__[j + j * h_dim1];
t[j + j * t_dim1] = -t[j + j * t_dim1];
}
if (ilz) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
z__[jr + j * z_dim1] = -z__[jr + j * z_dim1];
/* L20: */
}
}
}
alphar[j] = h__[j + j * h_dim1];
alphai[j] = 0.;
beta[j] = t[j + j * t_dim1];
/* L30: */
}
/* If IHI < ILO, skip QZ steps */
if (*ihi < *ilo) {
goto L380;
}
/* MAIN QZ ITERATION LOOP */
/* Initialize dynamic indices */
/* Eigenvalues ILAST+1:N have been found. */
/* Column operations modify rows IFRSTM:whatever. */
/* Row operations modify columns whatever:ILASTM. */
/* If only eigenvalues are being computed, then */
/* IFRSTM is the row of the last splitting row above row ILAST; */
/* this is always at least ILO. */
/* IITER counts iterations since the last eigenvalue was found, */
/* to tell when to use an extraordinary shift. */
/* MAXIT is the maximum number of QZ sweeps allowed. */
ilast = *ihi;
if (ilschr) {
ifrstm = 1;
ilastm = *n;
} else {
ifrstm = *ilo;
ilastm = *ihi;
}
iiter = 0;
eshift = 0.;
maxit = (*ihi - *ilo + 1) * 30;
i__1 = maxit;
for (jiter = 1; jiter <= i__1; ++jiter) {
/* Split the matrix if possible. */
/* Two tests: */
/* 1: H(j,j-1)=0 or j=ILO */
/* 2: T(j,j)=0 */
if (ilast == *ilo) {
/* Special case: j=ILAST */
goto L80;
} else {
if ((d__1 = h__[ilast + (ilast - 1) * h_dim1], abs(d__1)) <= atol)
{
h__[ilast + (ilast - 1) * h_dim1] = 0.;
goto L80;
}
}
if ((d__1 = t[ilast + ilast * t_dim1], abs(d__1)) <= btol) {
t[ilast + ilast * t_dim1] = 0.;
goto L70;
}
/* General case: j<ILAST */
i__2 = *ilo;
for (j = ilast - 1; j >= i__2; --j) {
/* Test 1: for H(j,j-1)=0 or j=ILO */
if (j == *ilo) {
ilazro = TRUE_;
} else {
if ((d__1 = h__[j + (j - 1) * h_dim1], abs(d__1)) <= atol) {
h__[j + (j - 1) * h_dim1] = 0.;
ilazro = TRUE_;
} else {
ilazro = FALSE_;
}
}
/* Test 2: for T(j,j)=0 */
if ((d__1 = t[j + j * t_dim1], abs(d__1)) < btol) {
t[j + j * t_dim1] = 0.;
/* Test 1a: Check for 2 consecutive small subdiagonals in A */
ilazr2 = FALSE_;
if (! ilazro) {
temp = (d__1 = h__[j + (j - 1) * h_dim1], abs(d__1));
temp2 = (d__1 = h__[j + j * h_dim1], abs(d__1));
tempr = max(temp,temp2);
if (tempr < 1. && tempr != 0.) {
temp /= tempr;
temp2 /= tempr;
}
if (temp * (ascale * (d__1 = h__[j + 1 + j * h_dim1], abs(
d__1))) <= temp2 * (ascale * atol)) {
ilazr2 = TRUE_;
}
}
/* If both tests pass (1 & 2), i.e., the leading diagonal */
/* element of B in the block is zero, split a 1x1 block off */
/* at the top. (I.e., at the J-th row/column) The leading */
/* diagonal element of the remainder can also be zero, so */
/* this may have to be done repeatedly. */
if (ilazro || ilazr2) {
i__3 = ilast - 1;
for (jch = j; jch <= i__3; ++jch) {
temp = h__[jch + jch * h_dim1];
dlartg_(&temp, &h__[jch + 1 + jch * h_dim1], &c__, &s,
&h__[jch + jch * h_dim1]);
h__[jch + 1 + jch * h_dim1] = 0.;
i__4 = ilastm - jch;
drot_(&i__4, &h__[jch + (jch + 1) * h_dim1], ldh, &
h__[jch + 1 + (jch + 1) * h_dim1], ldh, &c__,
&s);
i__4 = ilastm - jch;
drot_(&i__4, &t[jch + (jch + 1) * t_dim1], ldt, &t[
jch + 1 + (jch + 1) * t_dim1], ldt, &c__, &s);
if (ilq) {
drot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
* q_dim1 + 1], &c__1, &c__, &s);
}
if (ilazr2) {
h__[jch + (jch - 1) * h_dim1] *= c__;
}
ilazr2 = FALSE_;
if ((d__1 = t[jch + 1 + (jch + 1) * t_dim1], abs(d__1)
) >= btol) {
if (jch + 1 >= ilast) {
goto L80;
} else {
ifirst = jch + 1;
goto L110;
}
}
t[jch + 1 + (jch + 1) * t_dim1] = 0.;
/* L40: */
}
goto L70;
} else {
/* Only test 2 passed -- chase the zero to T(ILAST,ILAST) */
/* Then process as in the case T(ILAST,ILAST)=0 */
i__3 = ilast - 1;
for (jch = j; jch <= i__3; ++jch) {
temp = t[jch + (jch + 1) * t_dim1];
dlartg_(&temp, &t[jch + 1 + (jch + 1) * t_dim1], &c__,
&s, &t[jch + (jch + 1) * t_dim1]);
t[jch + 1 + (jch + 1) * t_dim1] = 0.;
if (jch < ilastm - 1) {
i__4 = ilastm - jch - 1;
drot_(&i__4, &t[jch + (jch + 2) * t_dim1], ldt, &
t[jch + 1 + (jch + 2) * t_dim1], ldt, &
c__, &s);
}
i__4 = ilastm - jch + 2;
drot_(&i__4, &h__[jch + (jch - 1) * h_dim1], ldh, &
h__[jch + 1 + (jch - 1) * h_dim1], ldh, &c__,
&s);
if (ilq) {
drot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
* q_dim1 + 1], &c__1, &c__, &s);
}
temp = h__[jch + 1 + jch * h_dim1];
dlartg_(&temp, &h__[jch + 1 + (jch - 1) * h_dim1], &
c__, &s, &h__[jch + 1 + jch * h_dim1]);
h__[jch + 1 + (jch - 1) * h_dim1] = 0.;
i__4 = jch + 1 - ifrstm;
drot_(&i__4, &h__[ifrstm + jch * h_dim1], &c__1, &h__[
ifrstm + (jch - 1) * h_dim1], &c__1, &c__, &s)
;
i__4 = jch - ifrstm;
drot_(&i__4, &t[ifrstm + jch * t_dim1], &c__1, &t[
ifrstm + (jch - 1) * t_dim1], &c__1, &c__, &s)
;
if (ilz) {
drot_(n, &z__[jch * z_dim1 + 1], &c__1, &z__[(jch
- 1) * z_dim1 + 1], &c__1, &c__, &s);
}
/* L50: */
}
goto L70;
}
} else if (ilazro) {
/* Only test 1 passed -- work on J:ILAST */
ifirst = j;
goto L110;
}
/* Neither test passed -- try next J */
/* L60: */
}
/* (Drop-through is "impossible") */
*info = *n + 1;
goto L420;
/* T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a */
/* 1x1 block. */
L70:
temp = h__[ilast + ilast * h_dim1];
dlartg_(&temp, &h__[ilast + (ilast - 1) * h_dim1], &c__, &s, &h__[
ilast + ilast * h_dim1]);
h__[ilast + (ilast - 1) * h_dim1] = 0.;
i__2 = ilast - ifrstm;
drot_(&i__2, &h__[ifrstm + ilast * h_dim1], &c__1, &h__[ifrstm + (
ilast - 1) * h_dim1], &c__1, &c__, &s);
i__2 = ilast - ifrstm;
drot_(&i__2, &t[ifrstm + ilast * t_dim1], &c__1, &t[ifrstm + (ilast -
1) * t_dim1], &c__1, &c__, &s);
if (ilz) {
drot_(n, &z__[ilast * z_dim1 + 1], &c__1, &z__[(ilast - 1) *
z_dim1 + 1], &c__1, &c__, &s);
}
/* H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI, */
/* and BETA */
L80:
if (t[ilast + ilast * t_dim1] < 0.) {
if (ilschr) {
i__2 = ilast;
for (j = ifrstm; j <= i__2; ++j) {
h__[j + ilast * h_dim1] = -h__[j + ilast * h_dim1];
t[j + ilast * t_dim1] = -t[j + ilast * t_dim1];
/* L90: */
}
} else {
h__[ilast + ilast * h_dim1] = -h__[ilast + ilast * h_dim1];
t[ilast + ilast * t_dim1] = -t[ilast + ilast * t_dim1];
}
if (ilz) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
z__[j + ilast * z_dim1] = -z__[j + ilast * z_dim1];
/* L100: */
}
}
}
alphar[ilast] = h__[ilast + ilast * h_dim1];
alphai[ilast] = 0.;
beta[ilast] = t[ilast + ilast * t_dim1];
/* Go to next block -- exit if finished. */
--ilast;
if (ilast < *ilo) {
goto L380;
}
/* Reset counters */
iiter = 0;
eshift = 0.;
if (! ilschr) {
ilastm = ilast;
if (ifrstm > ilast) {
ifrstm = *ilo;
}
}
goto L350;
/* QZ step */
/* This iteration only involves rows/columns IFIRST:ILAST. We */
/* assume IFIRST < ILAST, and that the diagonal of B is non-zero. */
L110:
++iiter;
if (! ilschr) {
ifrstm = ifirst;
}
/* Compute single shifts. */
/* At this point, IFIRST < ILAST, and the diagonal elements of */
/* T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in */
/* magnitude) */
if (iiter / 10 * 10 == iiter) {
/* Exceptional shift. Chosen for no particularly good reason. */
/* (Single shift only.) */
if ((doublereal) maxit * safmin * (d__1 = h__[ilast - 1 + ilast *
h_dim1], abs(d__1)) < (d__2 = t[ilast - 1 + (ilast - 1) *
t_dim1], abs(d__2))) {
eshift += h__[ilast - 1 + ilast * h_dim1] / t[ilast - 1 + (
ilast - 1) * t_dim1];
} else {
eshift += 1. / (safmin * (doublereal) maxit);
}
s1 = 1.;
wr = eshift;
} else {
/* Shifts based on the generalized eigenvalues of the */
/* bottom-right 2x2 block of A and B. The first eigenvalue */
/* returned by DLAG2 is the Wilkinson shift (AEP p.512), */
d__1 = safmin * 100.;
dlag2_(&h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &t[ilast - 1
+ (ilast - 1) * t_dim1], ldt, &d__1, &s1, &s2, &wr, &wr2,
&wi);
/* Computing MAX */
/* Computing MAX */
d__3 = 1., d__4 = abs(wr), d__3 = max(d__3,d__4), d__4 = abs(wi);
d__1 = s1, d__2 = safmin * max(d__3,d__4);
temp = max(d__1,d__2);
if (wi != 0.) {
goto L200;
}
}
/* Fiddle with shift to avoid overflow */
temp = min(ascale,1.) * (safmax * .5);
if (s1 > temp) {
scale = temp / s1;
} else {
scale = 1.;
}
temp = min(bscale,1.) * (safmax * .5);
if (abs(wr) > temp) {
/* Computing MIN */
d__1 = scale, d__2 = temp / abs(wr);
scale = min(d__1,d__2);
}
s1 = scale * s1;
wr = scale * wr;
/* Now check for two consecutive small subdiagonals. */
i__2 = ifirst + 1;
for (j = ilast - 1; j >= i__2; --j) {
istart = j;
temp = (d__1 = s1 * h__[j + (j - 1) * h_dim1], abs(d__1));
temp2 = (d__1 = s1 * h__[j + j * h_dim1] - wr * t[j + j * t_dim1],
abs(d__1));
tempr = max(temp,temp2);
if (tempr < 1. && tempr != 0.) {
temp /= tempr;
temp2 /= tempr;
}
if ((d__1 = ascale * h__[j + 1 + j * h_dim1] * temp, abs(d__1)) <=
ascale * atol * temp2) {
goto L130;
}
/* L120: */
}
istart = ifirst;
L130:
/* Do an implicit single-shift QZ sweep. */
/* Initial Q */
temp = s1 * h__[istart + istart * h_dim1] - wr * t[istart + istart *
t_dim1];
temp2 = s1 * h__[istart + 1 + istart * h_dim1];
dlartg_(&temp, &temp2, &c__, &s, &tempr);
/* Sweep */
i__2 = ilast - 1;
for (j = istart; j <= i__2; ++j) {
if (j > istart) {
temp = h__[j + (j - 1) * h_dim1];
dlartg_(&temp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &h__[
j + (j - 1) * h_dim1]);
h__[j + 1 + (j - 1) * h_dim1] = 0.;
}
i__3 = ilastm;
for (jc = j; jc <= i__3; ++jc) {
temp = c__ * h__[j + jc * h_dim1] + s * h__[j + 1 + jc *
h_dim1];
h__[j + 1 + jc * h_dim1] = -s * h__[j + jc * h_dim1] + c__ *
h__[j + 1 + jc * h_dim1];
h__[j + jc * h_dim1] = temp;
temp2 = c__ * t[j + jc * t_dim1] + s * t[j + 1 + jc * t_dim1];
t[j + 1 + jc * t_dim1] = -s * t[j + jc * t_dim1] + c__ * t[j
+ 1 + jc * t_dim1];
t[j + jc * t_dim1] = temp2;
/* L140: */
}
if (ilq) {
i__3 = *n;
for (jr = 1; jr <= i__3; ++jr) {
temp = c__ * q[jr + j * q_dim1] + s * q[jr + (j + 1) *
q_dim1];
q[jr + (j + 1) * q_dim1] = -s * q[jr + j * q_dim1] + c__ *
q[jr + (j + 1) * q_dim1];
q[jr + j * q_dim1] = temp;
/* L150: */
}
}
temp = t[j + 1 + (j + 1) * t_dim1];
dlartg_(&temp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j +
1) * t_dim1]);
t[j + 1 + j * t_dim1] = 0.;
/* Computing MIN */
i__4 = j + 2;
i__3 = min(i__4,ilast);
for (jr = ifrstm; jr <= i__3; ++jr) {
temp = c__ * h__[jr + (j + 1) * h_dim1] + s * h__[jr + j *
h_dim1];
h__[jr + j * h_dim1] = -s * h__[jr + (j + 1) * h_dim1] + c__ *
h__[jr + j * h_dim1];
h__[jr + (j + 1) * h_dim1] = temp;
/* L160: */
}
i__3 = j;
for (jr = ifrstm; jr <= i__3; ++jr) {
temp = c__ * t[jr + (j + 1) * t_dim1] + s * t[jr + j * t_dim1]
;
t[jr + j * t_dim1] = -s * t[jr + (j + 1) * t_dim1] + c__ * t[
jr + j * t_dim1];
t[jr + (j + 1) * t_dim1] = temp;
/* L170: */
}
if (ilz) {
i__3 = *n;
for (jr = 1; jr <= i__3; ++jr) {
temp = c__ * z__[jr + (j + 1) * z_dim1] + s * z__[jr + j *
z_dim1];
z__[jr + j * z_dim1] = -s * z__[jr + (j + 1) * z_dim1] +
c__ * z__[jr + j * z_dim1];
z__[jr + (j + 1) * z_dim1] = temp;
/* L180: */
}
}
/* L190: */
}
goto L350;
/* Use Francis double-shift */
/* Note: the Francis double-shift should work with real shifts, */
/* but only if the block is at least 3x3. */
/* This code may break if this point is reached with */
/* a 2x2 block with real eigenvalues. */
L200:
if (ifirst + 1 == ilast) {
/* Special case -- 2x2 block with complex eigenvectors */
/* Step 1: Standardize, that is, rotate so that */
/* ( B11 0 ) */
/* B = ( ) with B11 non-negative. */
/* ( 0 B22 ) */
dlasv2_(&t[ilast - 1 + (ilast - 1) * t_dim1], &t[ilast - 1 +
ilast * t_dim1], &t[ilast + ilast * t_dim1], &b22, &b11, &
sr, &cr, &sl, &cl);
if (b11 < 0.) {
cr = -cr;
sr = -sr;
b11 = -b11;
b22 = -b22;
}
i__2 = ilastm + 1 - ifirst;
drot_(&i__2, &h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &h__[
ilast + (ilast - 1) * h_dim1], ldh, &cl, &sl);
i__2 = ilast + 1 - ifrstm;
drot_(&i__2, &h__[ifrstm + (ilast - 1) * h_dim1], &c__1, &h__[
ifrstm + ilast * h_dim1], &c__1, &cr, &sr);
if (ilast < ilastm) {
i__2 = ilastm - ilast;
drot_(&i__2, &t[ilast - 1 + (ilast + 1) * t_dim1], ldt, &t[
ilast + (ilast + 1) * t_dim1], ldt, &cl, &sl);
}
if (ifrstm < ilast - 1) {
i__2 = ifirst - ifrstm;
drot_(&i__2, &t[ifrstm + (ilast - 1) * t_dim1], &c__1, &t[
ifrstm + ilast * t_dim1], &c__1, &cr, &sr);
}
if (ilq) {
drot_(n, &q[(ilast - 1) * q_dim1 + 1], &c__1, &q[ilast *
q_dim1 + 1], &c__1, &cl, &sl);
}
if (ilz) {
drot_(n, &z__[(ilast - 1) * z_dim1 + 1], &c__1, &z__[ilast *
z_dim1 + 1], &c__1, &cr, &sr);
}
t[ilast - 1 + (ilast - 1) * t_dim1] = b11;
t[ilast - 1 + ilast * t_dim1] = 0.;
t[ilast + (ilast - 1) * t_dim1] = 0.;
t[ilast + ilast * t_dim1] = b22;
/* If B22 is negative, negate column ILAST */
if (b22 < 0.) {
i__2 = ilast;
for (j = ifrstm; j <= i__2; ++j) {
h__[j + ilast * h_dim1] = -h__[j + ilast * h_dim1];
t[j + ilast * t_dim1] = -t[j + ilast * t_dim1];
/* L210: */
}
if (ilz) {
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
z__[j + ilast * z_dim1] = -z__[j + ilast * z_dim1];
/* L220: */
}
}
}
/* Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.) */
/* Recompute shift */
d__1 = safmin * 100.;
dlag2_(&h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &t[ilast - 1
+ (ilast - 1) * t_dim1], ldt, &d__1, &s1, &temp, &wr, &
temp2, &wi);
/* If standardization has perturbed the shift onto real line, */
/* do another (real single-shift) QR step. */
if (wi == 0.) {
goto L350;
}
s1inv = 1. / s1;
/* Do EISPACK (QZVAL) computation of alpha and beta */
a11 = h__[ilast - 1 + (ilast - 1) * h_dim1];
a21 = h__[ilast + (ilast - 1) * h_dim1];
a12 = h__[ilast - 1 + ilast * h_dim1];
a22 = h__[ilast + ilast * h_dim1];
/* Compute complex Givens rotation on right */
/* (Assume some element of C = (sA - wB) > unfl ) */
/* __ */
/* (sA - wB) ( CZ -SZ ) */
/* ( SZ CZ ) */
c11r = s1 * a11 - wr * b11;
c11i = -wi * b11;
c12 = s1 * a12;
c21 = s1 * a21;
c22r = s1 * a22 - wr * b22;
c22i = -wi * b22;
if (abs(c11r) + abs(c11i) + abs(c12) > abs(c21) + abs(c22r) + abs(
c22i)) {
t1 = dlapy3_(&c12, &c11r, &c11i);
cz = c12 / t1;
szr = -c11r / t1;
szi = -c11i / t1;
} else {
cz = dlapy2_(&c22r, &c22i);
if (cz <= safmin) {
cz = 0.;
szr = 1.;
szi = 0.;
} else {
tempr = c22r / cz;
tempi = c22i / cz;
t1 = dlapy2_(&cz, &c21);
cz /= t1;
szr = -c21 * tempr / t1;
szi = c21 * tempi / t1;
}
}
/* Compute Givens rotation on left */
/* ( CQ SQ ) */
/* ( __ ) A or B */
/* ( -SQ CQ ) */
an = abs(a11) + abs(a12) + abs(a21) + abs(a22);
bn = abs(b11) + abs(b22);
wabs = abs(wr) + abs(wi);
if (s1 * an > wabs * bn) {
cq = cz * b11;
sqr = szr * b22;
sqi = -szi * b22;
} else {
a1r = cz * a11 + szr * a12;
a1i = szi * a12;
a2r = cz * a21 + szr * a22;
a2i = szi * a22;
cq = dlapy2_(&a1r, &a1i);
if (cq <= safmin) {
cq = 0.;
sqr = 1.;
sqi = 0.;
} else {
tempr = a1r / cq;
tempi = a1i / cq;
sqr = tempr * a2r + tempi * a2i;
sqi = tempi * a2r - tempr * a2i;
}
}
t1 = dlapy3_(&cq, &sqr, &sqi);
cq /= t1;
sqr /= t1;
sqi /= t1;
/* Compute diagonal elements of QBZ */
tempr = sqr * szr - sqi * szi;
tempi = sqr * szi + sqi * szr;
b1r = cq * cz * b11 + tempr * b22;
b1i = tempi * b22;
b1a = dlapy2_(&b1r, &b1i);
b2r = cq * cz * b22 + tempr * b11;
b2i = -tempi * b11;
b2a = dlapy2_(&b2r, &b2i);
/* Normalize so beta > 0, and Im( alpha1 ) > 0 */
beta[ilast - 1] = b1a;
beta[ilast] = b2a;
alphar[ilast - 1] = wr * b1a * s1inv;
alphai[ilast - 1] = wi * b1a * s1inv;
alphar[ilast] = wr * b2a * s1inv;
alphai[ilast] = -(wi * b2a) * s1inv;
/* Step 3: Go to next block -- exit if finished. */
ilast = ifirst - 1;
if (ilast < *ilo) {
goto L380;
}
/* Reset counters */
iiter = 0;
eshift = 0.;
if (! ilschr) {
ilastm = ilast;
if (ifrstm > ilast) {
ifrstm = *ilo;
}
}
goto L350;
} else {
/* Usual case: 3x3 or larger block, using Francis implicit */
/* double-shift */
/* 2 */
/* Eigenvalue equation is w - c w + d = 0, */
/* -1 2 -1 */
/* so compute 1st column of (A B ) - c A B + d */
/* using the formula in QZIT (from EISPACK) */
/* We assume that the block is at least 3x3 */
ad11 = ascale * h__[ilast - 1 + (ilast - 1) * h_dim1] / (bscale *
t[ilast - 1 + (ilast - 1) * t_dim1]);
ad21 = ascale * h__[ilast + (ilast - 1) * h_dim1] / (bscale * t[
ilast - 1 + (ilast - 1) * t_dim1]);
ad12 = ascale * h__[ilast - 1 + ilast * h_dim1] / (bscale * t[
ilast + ilast * t_dim1]);
ad22 = ascale * h__[ilast + ilast * h_dim1] / (bscale * t[ilast +
ilast * t_dim1]);
u12 = t[ilast - 1 + ilast * t_dim1] / t[ilast + ilast * t_dim1];
ad11l = ascale * h__[ifirst + ifirst * h_dim1] / (bscale * t[
ifirst + ifirst * t_dim1]);
ad21l = ascale * h__[ifirst + 1 + ifirst * h_dim1] / (bscale * t[
ifirst + ifirst * t_dim1]);
ad12l = ascale * h__[ifirst + (ifirst + 1) * h_dim1] / (bscale *
t[ifirst + 1 + (ifirst + 1) * t_dim1]);
ad22l = ascale * h__[ifirst + 1 + (ifirst + 1) * h_dim1] / (
bscale * t[ifirst + 1 + (ifirst + 1) * t_dim1]);
ad32l = ascale * h__[ifirst + 2 + (ifirst + 1) * h_dim1] / (
bscale * t[ifirst + 1 + (ifirst + 1) * t_dim1]);
u12l = t[ifirst + (ifirst + 1) * t_dim1] / t[ifirst + 1 + (ifirst
+ 1) * t_dim1];
v[0] = (ad11 - ad11l) * (ad22 - ad11l) - ad12 * ad21 + ad21 * u12
* ad11l + (ad12l - ad11l * u12l) * ad21l;
v[1] = (ad22l - ad11l - ad21l * u12l - (ad11 - ad11l) - (ad22 -
ad11l) + ad21 * u12) * ad21l;
v[2] = ad32l * ad21l;
istart = ifirst;
dlarfg_(&c__3, v, &v[1], &c__1, &tau);
v[0] = 1.;
/* Sweep */
i__2 = ilast - 2;
for (j = istart; j <= i__2; ++j) {
/* All but last elements: use 3x3 Householder transforms. */
/* Zero (j-1)st column of A */
if (j > istart) {
v[0] = h__[j + (j - 1) * h_dim1];
v[1] = h__[j + 1 + (j - 1) * h_dim1];
v[2] = h__[j + 2 + (j - 1) * h_dim1];
dlarfg_(&c__3, &h__[j + (j - 1) * h_dim1], &v[1], &c__1, &
tau);
v[0] = 1.;
h__[j + 1 + (j - 1) * h_dim1] = 0.;
h__[j + 2 + (j - 1) * h_dim1] = 0.;
}
i__3 = ilastm;
for (jc = j; jc <= i__3; ++jc) {
temp = tau * (h__[j + jc * h_dim1] + v[1] * h__[j + 1 +
jc * h_dim1] + v[2] * h__[j + 2 + jc * h_dim1]);
h__[j + jc * h_dim1] -= temp;
h__[j + 1 + jc * h_dim1] -= temp * v[1];
h__[j + 2 + jc * h_dim1] -= temp * v[2];
temp2 = tau * (t[j + jc * t_dim1] + v[1] * t[j + 1 + jc *
t_dim1] + v[2] * t[j + 2 + jc * t_dim1]);
t[j + jc * t_dim1] -= temp2;
t[j + 1 + jc * t_dim1] -= temp2 * v[1];
t[j + 2 + jc * t_dim1] -= temp2 * v[2];
/* L230: */
}
if (ilq) {
i__3 = *n;
for (jr = 1; jr <= i__3; ++jr) {
temp = tau * (q[jr + j * q_dim1] + v[1] * q[jr + (j +
1) * q_dim1] + v[2] * q[jr + (j + 2) * q_dim1]
);
q[jr + j * q_dim1] -= temp;
q[jr + (j + 1) * q_dim1] -= temp * v[1];
q[jr + (j + 2) * q_dim1] -= temp * v[2];
/* L240: */
}
}
/* Zero j-th column of B (see DLAGBC for details) */
/* Swap rows to pivot */
ilpivt = FALSE_;
/* Computing MAX */
d__3 = (d__1 = t[j + 1 + (j + 1) * t_dim1], abs(d__1)), d__4 =
(d__2 = t[j + 1 + (j + 2) * t_dim1], abs(d__2));
temp = max(d__3,d__4);
/* Computing MAX */
d__3 = (d__1 = t[j + 2 + (j + 1) * t_dim1], abs(d__1)), d__4 =
(d__2 = t[j + 2 + (j + 2) * t_dim1], abs(d__2));
temp2 = max(d__3,d__4);
if (max(temp,temp2) < safmin) {
scale = 0.;
u1 = 1.;
u2 = 0.;
goto L250;
} else if (temp >= temp2) {
w11 = t[j + 1 + (j + 1) * t_dim1];
w21 = t[j + 2 + (j + 1) * t_dim1];
w12 = t[j + 1 + (j + 2) * t_dim1];
w22 = t[j + 2 + (j + 2) * t_dim1];
u1 = t[j + 1 + j * t_dim1];
u2 = t[j + 2 + j * t_dim1];
} else {
w21 = t[j + 1 + (j + 1) * t_dim1];
w11 = t[j + 2 + (j + 1) * t_dim1];
w22 = t[j + 1 + (j + 2) * t_dim1];
w12 = t[j + 2 + (j + 2) * t_dim1];
u2 = t[j + 1 + j * t_dim1];
u1 = t[j + 2 + j * t_dim1];
}
/* Swap columns if nec. */
if (abs(w12) > abs(w11)) {
ilpivt = TRUE_;
temp = w12;
temp2 = w22;
w12 = w11;
w22 = w21;
w11 = temp;
w21 = temp2;
}
/* LU-factor */
temp = w21 / w11;
u2 -= temp * u1;
w22 -= temp * w12;
w21 = 0.;
/* Compute SCALE */
scale = 1.;
if (abs(w22) < safmin) {
scale = 0.;
u2 = 1.;
u1 = -w12 / w11;
goto L250;
}
if (abs(w22) < abs(u2)) {
scale = (d__1 = w22 / u2, abs(d__1));
}
if (abs(w11) < abs(u1)) {
/* Computing MIN */
d__2 = scale, d__3 = (d__1 = w11 / u1, abs(d__1));
scale = min(d__2,d__3);
}
/* Solve */
u2 = scale * u2 / w22;
u1 = (scale * u1 - w12 * u2) / w11;
L250:
if (ilpivt) {
temp = u2;
u2 = u1;
u1 = temp;
}
/* Compute Householder Vector */
/* Computing 2nd power */
d__1 = scale;
/* Computing 2nd power */
d__2 = u1;
/* Computing 2nd power */
d__3 = u2;
t1 = sqrt(d__1 * d__1 + d__2 * d__2 + d__3 * d__3);
tau = scale / t1 + 1.;
vs = -1. / (scale + t1);
v[0] = 1.;
v[1] = vs * u1;
v[2] = vs * u2;
/* Apply transformations from the right. */
/* Computing MIN */
i__4 = j + 3;
i__3 = min(i__4,ilast);
for (jr = ifrstm; jr <= i__3; ++jr) {
temp = tau * (h__[jr + j * h_dim1] + v[1] * h__[jr + (j +
1) * h_dim1] + v[2] * h__[jr + (j + 2) * h_dim1]);
h__[jr + j * h_dim1] -= temp;
h__[jr + (j + 1) * h_dim1] -= temp * v[1];
h__[jr + (j + 2) * h_dim1] -= temp * v[2];
/* L260: */
}
i__3 = j + 2;
for (jr = ifrstm; jr <= i__3; ++jr) {
temp = tau * (t[jr + j * t_dim1] + v[1] * t[jr + (j + 1) *
t_dim1] + v[2] * t[jr + (j + 2) * t_dim1]);
t[jr + j * t_dim1] -= temp;
t[jr + (j + 1) * t_dim1] -= temp * v[1];
t[jr + (j + 2) * t_dim1] -= temp * v[2];
/* L270: */
}
if (ilz) {
i__3 = *n;
for (jr = 1; jr <= i__3; ++jr) {
temp = tau * (z__[jr + j * z_dim1] + v[1] * z__[jr + (
j + 1) * z_dim1] + v[2] * z__[jr + (j + 2) *
z_dim1]);
z__[jr + j * z_dim1] -= temp;
z__[jr + (j + 1) * z_dim1] -= temp * v[1];
z__[jr + (j + 2) * z_dim1] -= temp * v[2];
/* L280: */
}
}
t[j + 1 + j * t_dim1] = 0.;
t[j + 2 + j * t_dim1] = 0.;
/* L290: */
}
/* Last elements: Use Givens rotations */
/* Rotations from the left */
j = ilast - 1;
temp = h__[j + (j - 1) * h_dim1];
dlartg_(&temp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &h__[j +
(j - 1) * h_dim1]);
h__[j + 1 + (j - 1) * h_dim1] = 0.;
i__2 = ilastm;
for (jc = j; jc <= i__2; ++jc) {
temp = c__ * h__[j + jc * h_dim1] + s * h__[j + 1 + jc *
h_dim1];
h__[j + 1 + jc * h_dim1] = -s * h__[j + jc * h_dim1] + c__ *
h__[j + 1 + jc * h_dim1];
h__[j + jc * h_dim1] = temp;
temp2 = c__ * t[j + jc * t_dim1] + s * t[j + 1 + jc * t_dim1];
t[j + 1 + jc * t_dim1] = -s * t[j + jc * t_dim1] + c__ * t[j
+ 1 + jc * t_dim1];
t[j + jc * t_dim1] = temp2;
/* L300: */
}
if (ilq) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
temp = c__ * q[jr + j * q_dim1] + s * q[jr + (j + 1) *
q_dim1];
q[jr + (j + 1) * q_dim1] = -s * q[jr + j * q_dim1] + c__ *
q[jr + (j + 1) * q_dim1];
q[jr + j * q_dim1] = temp;
/* L310: */
}
}
/* Rotations from the right. */
temp = t[j + 1 + (j + 1) * t_dim1];
dlartg_(&temp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j +
1) * t_dim1]);
t[j + 1 + j * t_dim1] = 0.;
i__2 = ilast;
for (jr = ifrstm; jr <= i__2; ++jr) {
temp = c__ * h__[jr + (j + 1) * h_dim1] + s * h__[jr + j *
h_dim1];
h__[jr + j * h_dim1] = -s * h__[jr + (j + 1) * h_dim1] + c__ *
h__[jr + j * h_dim1];
h__[jr + (j + 1) * h_dim1] = temp;
/* L320: */
}
i__2 = ilast - 1;
for (jr = ifrstm; jr <= i__2; ++jr) {
temp = c__ * t[jr + (j + 1) * t_dim1] + s * t[jr + j * t_dim1]
;
t[jr + j * t_dim1] = -s * t[jr + (j + 1) * t_dim1] + c__ * t[
jr + j * t_dim1];
t[jr + (j + 1) * t_dim1] = temp;
/* L330: */
}
if (ilz) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
temp = c__ * z__[jr + (j + 1) * z_dim1] + s * z__[jr + j *
z_dim1];
z__[jr + j * z_dim1] = -s * z__[jr + (j + 1) * z_dim1] +
c__ * z__[jr + j * z_dim1];
z__[jr + (j + 1) * z_dim1] = temp;
/* L340: */
}
}
/* End of Double-Shift code */
}
goto L350;
/* End of iteration loop */
L350:
/* L360: */
;
}
/* Drop-through = non-convergence */
*info = ilast;
goto L420;
/* Successful completion of all QZ steps */
L380:
/* Set Eigenvalues 1:ILO-1 */
i__1 = *ilo - 1;
for (j = 1; j <= i__1; ++j) {
if (t[j + j * t_dim1] < 0.) {
if (ilschr) {
i__2 = j;
for (jr = 1; jr <= i__2; ++jr) {
h__[jr + j * h_dim1] = -h__[jr + j * h_dim1];
t[jr + j * t_dim1] = -t[jr + j * t_dim1];
/* L390: */
}
} else {
h__[j + j * h_dim1] = -h__[j + j * h_dim1];
t[j + j * t_dim1] = -t[j + j * t_dim1];
}
if (ilz) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
z__[jr + j * z_dim1] = -z__[jr + j * z_dim1];
/* L400: */
}
}
}
alphar[j] = h__[j + j * h_dim1];
alphai[j] = 0.;
beta[j] = t[j + j * t_dim1];
/* L410: */
}
/* Normal Termination */
*info = 0;
/* Exit (other than argument error) -- return optimal workspace size */
L420:
work[1] = (doublereal) (*n);
return 0;
/* End of DHGEQZ */
} /* dhgeqz_ */
|