aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dgtts2.c
blob: fce9cc8e8cf0aa8507702feaeca75431a5d69014 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/* dgtts2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int dgtts2_(integer *itrans, integer *n, integer *nrhs, 
	doublereal *dl, doublereal *d__, doublereal *du, doublereal *du2, 
	integer *ipiv, doublereal *b, integer *ldb)
{
    /* System generated locals */
    integer b_dim1, b_offset, i__1, i__2;

    /* Local variables */
    integer i__, j, ip;
    doublereal temp;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGTTS2 solves one of the systems of equations */
/*     A*X = B  or  A'*X = B, */
/*  with a tridiagonal matrix A using the LU factorization computed */
/*  by DGTTRF. */

/*  Arguments */
/*  ========= */

/*  ITRANS  (input) INTEGER */
/*          Specifies the form of the system of equations. */
/*          = 0:  A * X = B  (No transpose) */
/*          = 1:  A'* X = B  (Transpose) */
/*          = 2:  A'* X = B  (Conjugate transpose = Transpose) */

/*  N       (input) INTEGER */
/*          The order of the matrix A. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  DL      (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (n-1) multipliers that define the matrix L from the */
/*          LU factorization of A. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The n diagonal elements of the upper triangular matrix U from */
/*          the LU factorization of A. */

/*  DU      (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (n-1) elements of the first super-diagonal of U. */

/*  DU2     (input) DOUBLE PRECISION array, dimension (N-2) */
/*          The (n-2) elements of the second super-diagonal of U. */

/*  IPIV    (input) INTEGER array, dimension (N) */
/*          The pivot indices; for 1 <= i <= n, row i of the matrix was */
/*          interchanged with row IPIV(i).  IPIV(i) will always be either */
/*          i or i+1; IPIV(i) = i indicates a row interchange was not */
/*          required. */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          On entry, the matrix of right hand side vectors B. */
/*          On exit, B is overwritten by the solution vectors X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick return if possible */

    /* Parameter adjustments */
    --dl;
    --d__;
    --du;
    --du2;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

    if (*itrans == 0) {

/*        Solve A*X = B using the LU factorization of A, */
/*        overwriting each right hand side vector with its solution. */

	if (*nrhs <= 1) {
	    j = 1;
L10:

/*           Solve L*x = b. */

	    i__1 = *n - 1;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		ip = ipiv[i__];
		temp = b[i__ + 1 - ip + i__ + j * b_dim1] - dl[i__] * b[ip + 
			j * b_dim1];
		b[i__ + j * b_dim1] = b[ip + j * b_dim1];
		b[i__ + 1 + j * b_dim1] = temp;
/* L20: */
	    }

/*           Solve U*x = b. */

	    b[*n + j * b_dim1] /= d__[*n];
	    if (*n > 1) {
		b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1] 
			* b[*n + j * b_dim1]) / d__[*n - 1];
	    }
	    for (i__ = *n - 2; i__ >= 1; --i__) {
		b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__ 
			+ 1 + j * b_dim1] - du2[i__] * b[i__ + 2 + j * b_dim1]
			) / d__[i__];
/* L30: */
	    }
	    if (j < *nrhs) {
		++j;
		goto L10;
	    }
	} else {
	    i__1 = *nrhs;
	    for (j = 1; j <= i__1; ++j) {

/*              Solve L*x = b. */

		i__2 = *n - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    if (ipiv[i__] == i__) {
			b[i__ + 1 + j * b_dim1] -= dl[i__] * b[i__ + j * 
				b_dim1];
		    } else {
			temp = b[i__ + j * b_dim1];
			b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];
			b[i__ + 1 + j * b_dim1] = temp - dl[i__] * b[i__ + j *
				 b_dim1];
		    }
/* L40: */
		}

/*              Solve U*x = b. */

		b[*n + j * b_dim1] /= d__[*n];
		if (*n > 1) {
		    b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n 
			    - 1] * b[*n + j * b_dim1]) / d__[*n - 1];
		}
		for (i__ = *n - 2; i__ >= 1; --i__) {
		    b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[
			    i__ + 1 + j * b_dim1] - du2[i__] * b[i__ + 2 + j *
			     b_dim1]) / d__[i__];
/* L50: */
		}
/* L60: */
	    }
	}
    } else {

/*        Solve A' * X = B. */

	if (*nrhs <= 1) {

/*           Solve U'*x = b. */

	    j = 1;
L70:
	    b[j * b_dim1 + 1] /= d__[1];
	    if (*n > 1) {
		b[j * b_dim1 + 2] = (b[j * b_dim1 + 2] - du[1] * b[j * b_dim1 
			+ 1]) / d__[2];
	    }
	    i__1 = *n;
	    for (i__ = 3; i__ <= i__1; ++i__) {
		b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__ - 1] * b[
			i__ - 1 + j * b_dim1] - du2[i__ - 2] * b[i__ - 2 + j *
			 b_dim1]) / d__[i__];
/* L80: */
	    }

/*           Solve L'*x = b. */

	    for (i__ = *n - 1; i__ >= 1; --i__) {
		ip = ipiv[i__];
		temp = b[i__ + j * b_dim1] - dl[i__] * b[i__ + 1 + j * b_dim1]
			;
		b[i__ + j * b_dim1] = b[ip + j * b_dim1];
		b[ip + j * b_dim1] = temp;
/* L90: */
	    }
	    if (j < *nrhs) {
		++j;
		goto L70;
	    }

	} else {
	    i__1 = *nrhs;
	    for (j = 1; j <= i__1; ++j) {

/*              Solve U'*x = b. */

		b[j * b_dim1 + 1] /= d__[1];
		if (*n > 1) {
		    b[j * b_dim1 + 2] = (b[j * b_dim1 + 2] - du[1] * b[j * 
			    b_dim1 + 1]) / d__[2];
		}
		i__2 = *n;
		for (i__ = 3; i__ <= i__2; ++i__) {
		    b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__ - 1] *
			     b[i__ - 1 + j * b_dim1] - du2[i__ - 2] * b[i__ - 
			    2 + j * b_dim1]) / d__[i__];
/* L100: */
		}
		for (i__ = *n - 1; i__ >= 1; --i__) {
		    if (ipiv[i__] == i__) {
			b[i__ + j * b_dim1] -= dl[i__] * b[i__ + 1 + j * 
				b_dim1];
		    } else {
			temp = b[i__ + 1 + j * b_dim1];
			b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - dl[
				i__] * temp;
			b[i__ + j * b_dim1] = temp;
		    }
/* L110: */
		}
/* L120: */
	    }
	}
    }

/*     End of DGTTS2 */

    return 0;
} /* dgtts2_ */