aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dgttrf.c
blob: 510bc02d857051ea6b815eb6cd40a87f4cfe3701 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/* dgttrf.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int dgttrf_(integer *n, doublereal *dl, doublereal *d__, 
	doublereal *du, doublereal *du2, integer *ipiv, integer *info)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer i__;
    doublereal fact, temp;
    extern /* Subroutine */ int xerbla_(char *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGTTRF computes an LU factorization of a real tridiagonal matrix A */
/*  using elimination with partial pivoting and row interchanges. */

/*  The factorization has the form */
/*     A = L * U */
/*  where L is a product of permutation and unit lower bidiagonal */
/*  matrices and U is upper triangular with nonzeros in only the main */
/*  diagonal and first two superdiagonals. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix A. */

/*  DL      (input/output) DOUBLE PRECISION array, dimension (N-1) */
/*          On entry, DL must contain the (n-1) sub-diagonal elements of */
/*          A. */

/*          On exit, DL is overwritten by the (n-1) multipliers that */
/*          define the matrix L from the LU factorization of A. */

/*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
/*          On entry, D must contain the diagonal elements of A. */

/*          On exit, D is overwritten by the n diagonal elements of the */
/*          upper triangular matrix U from the LU factorization of A. */

/*  DU      (input/output) DOUBLE PRECISION array, dimension (N-1) */
/*          On entry, DU must contain the (n-1) super-diagonal elements */
/*          of A. */

/*          On exit, DU is overwritten by the (n-1) elements of the first */
/*          super-diagonal of U. */

/*  DU2     (output) DOUBLE PRECISION array, dimension (N-2) */
/*          On exit, DU2 is overwritten by the (n-2) elements of the */
/*          second super-diagonal of U. */

/*  IPIV    (output) INTEGER array, dimension (N) */
/*          The pivot indices; for 1 <= i <= n, row i of the matrix was */
/*          interchanged with row IPIV(i).  IPIV(i) will always be either */
/*          i or i+1; IPIV(i) = i indicates a row interchange was not */
/*          required. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -k, the k-th argument had an illegal value */
/*          > 0:  if INFO = k, U(k,k) is exactly zero. The factorization */
/*                has been completed, but the factor U is exactly */
/*                singular, and division by zero will occur if it is used */
/*                to solve a system of equations. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --ipiv;
    --du2;
    --du;
    --d__;
    --dl;

    /* Function Body */
    *info = 0;
    if (*n < 0) {
	*info = -1;
	i__1 = -(*info);
	xerbla_("DGTTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Initialize IPIV(i) = i and DU2(I) = 0 */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	ipiv[i__] = i__;
/* L10: */
    }
    i__1 = *n - 2;
    for (i__ = 1; i__ <= i__1; ++i__) {
	du2[i__] = 0.;
/* L20: */
    }

    i__1 = *n - 2;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {

/*           No row interchange required, eliminate DL(I) */

	    if (d__[i__] != 0.) {
		fact = dl[i__] / d__[i__];
		dl[i__] = fact;
		d__[i__ + 1] -= fact * du[i__];
	    }
	} else {

/*           Interchange rows I and I+1, eliminate DL(I) */

	    fact = d__[i__] / dl[i__];
	    d__[i__] = dl[i__];
	    dl[i__] = fact;
	    temp = du[i__];
	    du[i__] = d__[i__ + 1];
	    d__[i__ + 1] = temp - fact * d__[i__ + 1];
	    du2[i__] = du[i__ + 1];
	    du[i__ + 1] = -fact * du[i__ + 1];
	    ipiv[i__] = i__ + 1;
	}
/* L30: */
    }
    if (*n > 1) {
	i__ = *n - 1;
	if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
	    if (d__[i__] != 0.) {
		fact = dl[i__] / d__[i__];
		dl[i__] = fact;
		d__[i__ + 1] -= fact * du[i__];
	    }
	} else {
	    fact = d__[i__] / dl[i__];
	    d__[i__] = dl[i__];
	    dl[i__] = fact;
	    temp = du[i__];
	    du[i__] = d__[i__ + 1];
	    d__[i__ + 1] = temp - fact * d__[i__ + 1];
	    ipiv[i__] = i__ + 1;
	}
    }

/*     Check for a zero on the diagonal of U. */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (d__[i__] == 0.) {
	    *info = i__;
	    goto L50;
	}
/* L40: */
    }
L50:

    return 0;

/*     End of DGTTRF */

} /* dgttrf_ */